LGT8FX8D Series - FLASH MCU Overview v1.0.5

• High-performance low-power 8 -bit LGT8XM core

131 instructions, more than 80% of the implementation of a single cycle

LogicGreen Technologies Co., LTD

Functional overview

Advanced RISC architecture

32x8 general purpose working registers
16MHz work up to 16MIPS implementation efficiency
Internal single cycle multiplier (8x8)
Nonvolatile program and data storage space
4K / 8K / 16K / 32Kbytes on-chip programming FLASH program memory
512 / 1K / 1K / 2Kbytes internal SRAM
Programmable E2PROM analog interface for byte access
A new program encryption algorithm to ensure user code security
Peripheral controller
Two 8-bit timers with independent prescaler support compare output mode
A 16-bit timer with independent prescaler that supports input capture and compare output
The internal 32KHz calibrates the \mathbf{RC} oscillator to implement the real-time counter function
Up to 6 PWM outputs can be supported , programmable dead zone control
8-channel 12-bit high-speed analog-to-digital converter (ADC)
Two analog comparators (\mathbf{ACs}) that support expansion from the ADC input channels
Two fixed-gain operational amplifiers (\mathbf{OPA}) that can be used as front-end inputs for ADC / AC
Internal $1.25V / 2.56V \pm 1\%$ calibrable reference voltage source
Two 8-bit DACs that can be used to generate a reference voltage source
Programmable Watchdog Timer (WDT)
Programmable Synchronous / Asynchronous Serial Interface (USART)
Synchronous peripheral interface ($\ensuremath{\mathbf{SPI}}$), programmable master / slave operating mode
Programmable two-wire serial interface (\mathbf{TWI}), compatible with $\mathbf{I2C}$ master-slave mode
Special processor function
SWD two-wire debugging / production interface
External interrupt source and I / O level change interrupt support
Built-in power-on reset circuit ($\ensuremath{\textbf{POR}}$) and 3 low-voltage detection circuit ($\ensuremath{\textbf{LVD}}$)
Built-in 1% calibrable 32MHz RC oscillator
Built-in 1% calibrable 32KHz RC oscillator
External support 32.768KHz and 400K \sim 20MHz crystal input
• I / O and package
QFP32L (up to 30 I / O)
SSOP28 / 24/20/16
working environment
Working voltage: $1.8V \sim 5.5V$
Operating frequency: $0 \sim 20 MHz$
Operating temperature: $-40C \sim +85C$
HBM ESD : > ± 4000V

8-bit LGT8XM

RISC Microcontroller with In-System Programmable FLASH Memory

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Data book Version 1.0.5

Application areas Kitchen electric Induction Cooker Microwave oven Rice cookers and so on home appliances Soymilk coffee pot Water heaters and so on Intelligent control circuit Battery management Electric products Smart toys Hand hold the instrument

Page 2

LGT8FX8D Series - FLASH MCU Overview v1.0.5

LogicGreen Technologies Co., LTD

system framework

	32K				
	RC		SWD		
OSC .		CMU	LGT8XM	Memory	SRAM
	32M			Interface	512B ~ 2K
	RC	PMU			
сс	POR		FLASH	I/O	SPI
ND	LVD	RMU	4/8/16 / 32K	Interface	M / S
DC					I2C
IC			ADC		M / S
PA	AIO				
			AC		USART
		1/0	0.04		
			UPA		
		MUX			WDT
			Timer		
	PIO		16bit		Timer
uat / 0					8bit x2
			GPIO		

LGT8FX8D

Module name	Module function
SWD	Debugging module, while achieving online debugging and ISP functions
LGT8XM	8bit high performance RISC kernel
CMU	The clock management module generates the various operating clocks required by the system
PMU	Power management module, responsible for managing the conversion between the working state of the system
RMU	Reset generation module
POR / LVD	Power-on reset module and low-voltage detection circuit
ADC	8-channel 12-bit analog-to-digital converter
AC	Analog comparator
OPA	Operational Amplifier
Timer	Timer / Event Counter
WDT	Watchdog reset module
SPI M / S	Master slave SPI controller
I2C M / S	Master slave I2C controller
USART	Synchronous / asynchronous serial transceiver
AIO	ADC input channel
PIO	Programmable digital I / O

- 2 -

Page 3

LGT8FX8D Series - FLASH MCU Overview v1.0.5

LogicGreen Technologies Co., LTD

Package definition

 $\begin{array}{cccccccc} & & & & & T13 & T12 \\ t^8 & t^7 & T16 & t^4 & CIN & CIN \\ IN & L/P & A \end{array} \\ \end{array}$

	PC1 / ADC1 / PCINT9
	PC0 / ADC0 / OC0A / PCINT8
	PE3 / ADC7 / ACIN3
LGT8FX8 Series	PE2 / SWD
QFP32L	PE6 / VREF
	PE1 / ADC6 / ACIN2
	PE0 / SWC
	PB5 / OPA3 / SCK / PCINT6

LGT8FX8 Series SSOP28

PCINT14 / RSTN / PC6
PCINT16 / RXD / PD0
PCINT17 / TXD / PD1
PCINT18 / INT0 / PD2
PCINT19 / OC2B / INT1 / PD3
PCINT20 / XCK / T0 / DAO / PD4
VCC
GND
PCINT6 / OSC1 / PB6
PCINT7 / OSC2 / PB7
PCINT21 / OC0B / T1 / PD5
PCINT22 / OC0A / ACIN0 / PD6
PCINT23 / ACIN1 / OPA0 // PD7
PCINT0 / CLKO / ICP1 / OPA1 / PB0

PCINT19 / OC2B / INT1 / PD3

PCINT20 / XCK / T0 / DAO / PD4

PCINT24 / OC0A / PE4

PCINT25 / CLKO / DAO1 / PE5 PCINT6 / OSC1 / PB6 PCINT7 / OSC2 / PB7

VCC

GND

PC5 / ADC5 / SCL / PCINT13
PC4 / ADC4 / SDA / PCINT12
PC3 / ADC3 / PCINT11
PC2 / ADC2 / PCINT10
PC1 / ADC1 / PCINT9
PC0 / ADC0 / PCINT8
PE2 / ADC7 / ACIN3 / SWD
PE6 / AVREF
PE6 / AVREF PE0 / ADC6 / ACIN2 / SWC
PE6 / AVREF PE0 / ADC6 / ACIN2 / SWC PB5 / OPA3 / SCK / PCINT5
PE6 / AVREF PE0 / ADC6 / ACIN2 / SWC PB5 / OPA3 / SCK / PCINT5 PB4 / OPA2 / MISO / PCINT4
PE6 / AVREF PE0 / ADC6 / ACIN2 / SWC PB5 / OPA3 / SCK / PCINT5 PB4 / OPA2 / MISO / PCINT4 PB3 / MOSI / OC2A / PCINT3
PE6 / AVREF PE0 / ADC6 / ACIN2 / SWC PB5 / OPA3 / SCK / PCINT5 PB4 / OPA2 / MISO / PCINT4 PB3 / MOSI / OC2A / PCINT3 PB2 / SPSS / OC1B / PCINT2

- 3 -

Page 4

LGT8FX8D Series - FLASH MCU Overview v1.0.5

LogicGreen Technologies Co., LTD

RESETN / PC6		PC5 / ADC5 / SCL
INT0 / PD2		PC4 / ADC4 / SDA
INT1 / PD3		PC3 / ADC3
VCC		PC2 / ADC2
GND		PC1 / ADC1
OSC1 / PB6	LGT8FX8 Series	PC0 / ADC0 / OC0A
OSC2 / PB7	SSOP24	PE2 / ADC7 / ACIN3 / VREF / SWD
OC0B / T1 / RXD / PD5		PE0 / ADC6 / ACIN2 / SWC

https://translate.googleusercontent.com/translate_f

OC0A / ACIN0 / TXD / PD6	PB5 / OPA3 / SCK
ACIN1 / OPA0 / PD7	PB4 / OPA2 / MISO
CLKO / ICP1 / OPA1 / PB0	PB3 / MOSI / OC2A
OC1A / PB1	PB2 / OC1B / SPSS

Page 5

LGT8FX8D Series - FLASH MCU Overview v1.0.5

LogicGreen Technologies Co., LTD

Package instructions

In the LGT8FX8D family of packages, the QFP32L package leads all pins. Other packages are bundled with multiple internal I / O on a QFP32 basis Pin generated on the pin. Special attention should be paid when configuring pin orientation. The following table lists the bindings for the various package pins:

- 4 -

QFP32	L	DWPU S	SSOP28L	SSOP24L	SSOP20L
01	PD3 / INT1 / OC2B / PCINT19	-	05	03	02
02	PD4 / DAO / T0 / XCK / PCINT20	Y	06	-	03
03	PE4 / 0C0A * / PCINT24	Y	-	-	-
04	VCC	-	07	04	04
05	VSS	-	08	05	05
06	PE5 / DAO1 / CLKO / PCINT25	Y	-	-	-
07	PB6 / OSC1 / PCINT6	Y (#)	09	06	06
08	PB7 / OSC2 / PCINT7	Y	10	07	07
09	PD5 / RXD * / T1 / 0C0B / PCINT21	-	11	08	08
10	PD6 / TXD * / ACIN0 / OC0A * / PCINT22	Y	12	09	09
11	PD7 / ACIN1 / PCINT23	Y	13	10	10
12	PB0 / ICP1 / CLKO * / PCINT0	Y	14	11	11
13	PB1 / OC1A / SPSS * / PCINT1	-	15	12	11
14	PB2 / OC1B / SPSS / PCINT2	-	16	13	12

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

15	PB3 / MOSI / OC2A / PCINT13	Y	17	14	
16	PB4 / MISO / PCINT4	Y	18	15	13
17	PB5 / SCK / PCINT6	Y	19	16	14
18	PE0 / SWC	-	20	17	15
19	PE1 / ADC6 / ACIN2	Y	20	17	15
20	PE6 / AVREF	Y	twenty one		
twenty	r on PE2 / SWD	-	4	18	16
twenty	twBE3 / ADC7 / ACIN3	Y	twenty two		
twenty	thRee0 / ADC0 / OC0A * / PCINT8	Y	twenty three	19	17
twenty	folPC1 / ADC1 / PCINT9	Y	twenty four	20	18
25	PC2 / ADC2 / PCINT10	Y	25	twenty one	-
26	PC3 / ADC3 / PCINT11	Y	26	twenty two	-
27	PC4 / ADC4 / SDA / PCINT12	Y	27	twenty three	19
28	PC5 / ADC5 / SCL / PCINT13	Y	28	twenty four	20
29	PC6 / RSTN / PCINT14	Y	01	01	01
30	PD0 / RXD / PCINT16	Y	02	-	-
31	PD1 / TXD / PCINT17	Y	03	-	-
32	PD2 / INT0 / PCINT18	Y	04	02	02

(*): * Marked with the pin function to change the function of the second optional position, you can set the relevant register; OC0A is controlled by OC0C0 of PMXCR and OC0AS bit of TCCR0B; RXD / TXD is controlled by TDD6 / RDD6 of PMXCR System; SPSS is controlled by PMB1 bit of PMXCR;

(#): If the PB6 pin is not used as an external crystal pin, use an external weak pull-down, the internal configuration bit is output low; **DWPU:** pin default weak pull-up. When these pins are input I / O, there is a non-closed weak pull-up (80K or so)

- 5 -

Page 6

LGT8FX8D Series - FLASH MCU Overview v1.0.5

LogicGreen Technologies Co., LTD

Pin description

Pin name	Functional description
VCC	System power supply $(1.8V \sim 5.5V)$
GND	Systematically
OSC1	External crystal input and output
OSC2	
RSTN	External Asynchronous Reset Input
RXD	Synchronous / asynchronous UART interface
TXD	
XCK	
INT0 / 1	External interrupt input, asynchronous wake source
OC0A / B	Timer 0 compare output (PWM0A / B)
OC1A / B	Timer 1 compare output (PWM1A / B)
OC2A / B	Timer 2 compare output (PWM2A / B)
SCL	TWI Two-Wire Data Interface (I2C)
SDA	
SCK	SPI interface
SPSS	
MISO	
MOSI	
Т0	Timer 0 external clock input
T1	Timer 1 external clock input
ICP1	Timer 1 external capture input
SWD / SWC	SWD debug interface
PCINTX	Pin level change interrupt function
ADC7 0	ADC input channel

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

DAO0 / 1	DAC output channel
VREF	ADC external reference voltage input
AIN0 / 1	Analog Comparator 0 External Input
AIN2 / 3	Analog Comparator 1 External Input
OPA0 / 1	Operational Amplifier 0 External Input
OPA2 / 3	Operational amplifier 1 external input
CLKO	System clock output
РВ7 0	Programmable I / O
PD7 0	Programmable I / O
PC6 0	Programmable I / O
PE6 0	Programmable I / O

- 6 -

Page 7

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

LGT8XM kernel

• Low power design

High efficiency RISC architecture

• 130 instructions, of which more than 80% for a single cycle

• Embedded online debugging (OCD) support

Overview

This section describes the LGT8XM kernel architecture and functionality. Kernel is the brain of the MCU, is responsible for ensuring that the program is positive The kernel must be able to perform calculations, control peripherals, and handle various interrupts.

The following figure shows the structure of the LGT8XM kernel:

	Instruction Buffer	PC Generator	
	Instruction Fetch Stage	Instruction Pre-execute	Interrupt & Pipeline Control &
Flash Program Memory	Instruction Decode	Instruction Execute IOS ALU	OCD
	SREG (status)	Memory Interface	Register File

RAM & Peripherals

To achieve greater efficiency and parallelism, the LGT8XM core uses a Harvard architecture - a separate data and program bus. The instruction is executed through an optimized two-stage pipeline, and the two-stage pipeline can reduce the number of invalid instructions in the pipeline The FLASH program memory access, so you can reduce the power consumption of the kernel. While the LGT8XM kernel in the fetch So that the order of the increase in the instruction cache (which can cache two instructions), through the instruction cycle in the pre-execution module, Further reducing the FLASH program memory access frequency; by our large number of tests, LGT8XM can be more than other similar The architecture of the kernel to reduce the access to about 50% of the FLASH, greatly reducing the operating power of the entire system.

The LGT8XM core has 32 8-bit high-speed access to the common file register (Register file), help to achieve a single week

Period of arithmetic and logic operations (ALU). In general, the ALU operation of the two operands are from the general working register,

The result of the ALU operation is also written to the register file in one cycle.

32 of the 6 working registers are used to combine the two 16-bit registers, which can be used for indirect addressing Address pointer, used to access external storage space and FLASH program space. LGT8XM supports single cycle 16-bit arithmetic Count, greatly improve the efficiency of indirect addressing. The three special 16-bit registers in the LGT8XM core are named X, Y, The Z register will be described later in detail.

-1-

Page 8

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ALU supports the arithmetic and logic operations between registers and between constants and registers. A single register operation can also be performed Executed in ALU. After the ALU operation is complete, the effect of the operation result on the kernel state is updated to the status register (SREG).

Program flow control through the conditions and unconditional jump / call to achieve, can be addressed to the program area. most The LGT8XM instruction is 16 bits. Each program address space corresponds to a 16-bit or 32-bit LGT8XM instruction.

After the kernel responds to an interrupt or subroutine call, the return address (PC) is stored on the stack. The stack is assigned to the system one In the data SRAM, so the size of the stack is limited only by the size and usage of the SRAM in the system. All support interrupted or Subroutine calls must be initialized by initializing the stack pointer register (SP), which can be accessed through IO space. data SRAM can be accessed through 5 different addressing modes. LGT8XM's internal storage space is linearly mapped to one Uniform address space. Please refer to the description of the storage section.

The LGT8XM core contains a flexible interrupt controller, which can be accessed via a status register Board interrupt enable bit control. All interrupts have a separate interrupt vector. The interrupt priority is associated with the interrupt vector address Corresponding relationship, the smaller the interrupt address, the higher the priority of the interrupt.

The I / O space contains 64 register spaces that can be addressed directly by the IN / OUT instruction. These registers are realistic Core control, and status registers, SPI and other I / O peripherals control functions. This part of the space can be through IN / OUT Direct access can also be accessed through the address they are mapped to the data memory space (0x20 - 0x5F). In addition, The LGT8FX8D also includes extended I / O space, which is mapped to data storage space 0x60 - 0xFF, which can only be used ST / STS / STD and LD / LDS / LDD instructions.

Arithmetic logic operation unit (ALU)

The LGT8XM contains a 16-bit arithmetic logic unit that can be completed in one cycle. The arithmetic operation. The efficient ALU is connected to 32 general purpose working registers. Be able to complete two registers in one cycle Or the arithmetic and logic operations between the register and the immediate data. ALU operations are divided into three kinds: arithmetic, logic and bit operations At the same time ALU part also contains a single cycle of the hardware multiplier, in a cycle to achieve two 8-bit register Direct sign or unsigned operation. Please refer to the instruction set section for details.

Status register (SREG)

SREC register definition

The status register mainly stores the result information generated by the last ALU operation. This information is used Control the program execution flow. The status register is updated after the ALU operation is complete, thus eliminating the need to use the single Unique comparison instructions can bring more compact and efficient code implementation.

The value of the status register is not automatically saved and restored when the response is interrupted and exited from the interrupt, which requires software to be Now.

on on one give									
			SREG s	ystem status re	gister				
Address: 0x3F (0x5F)			Default: 0x0	00				
Bit	7	6	5	4	3	2	1	0	
Name	Ι	Т	Н	S	v	N.	Z	С	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}					
Initial	0	0	0	0	0	0	0	0	
Bit definition									
[0]	С	The carry fl	ag indicates the	at the arithmet	ic or logic ope	ration has caus	ed the carry. F	or details, refer to th	ne instruction description
	7	Zero flag ir	dicating that the	he result of ari	thmetic or logi	c operation is	zero, refer to t	ne instruction descri	ntion section

Page 9

LGT8FX8D Series - P	rogrammi	ng Manual 1.0.5 LogicGreen Technologies Co., LTD
[2]	N.	A negative sign indicates that a mathematical or logical operation produces a negative number, please refer to the instruction description section
[3]	v	The overflow flag indicates that the result of the two's complement operation has overflowed. Refer to the instruction description section
[4]	s	Symbol bit, equivalent to the exclusive OR operation of N and V, please refer to the instruction description section
[5]	Н	The semi-carry flag, which is useful in the BCD operation, indicates that the byte operation produces a half carry
		Temporary bit, bit copy (BLD) and bit memory (BST) instructions, T bits will be used as a temporary
[6]	Т	A value for temporarily storing a bit in a general purpose register. Please refer to the instruction description
		Minute
		The global interrupt enable bit must be set to 1 to enable the kernel to respond to an interrupt event. different
		The interrupt source is controlled by a separate control bit. The global interrupt enable bit is controlled by the interrupt signal entering the core
[7]	Ι	The last barrier. The I bit is automatically cleared by the hardware after the kernel responds to the interrupt vector, during execution
		After the return instruction (RETI) is set automatically. The I bit can also be changed using the SEI and CLI instructions
		Test instructions section

Generic working register

The general purpose register is optimized for the LGT8XM instruction set architecture. In order to achieve the efficiency and flexibility required for kernel execution, LGT8XM internal common working registers support several access modes:

An 8-bit read while an 8-bit write operation

- Two 8-bit read at the same time an 8-bit write operation
- Two 8-bit read at the same time a 16-bit write operation
- A 16-bit read while a 16-bit write operation

LGT8XM universal working register

	7		0	Addr	
		R0		0x00	
		R1		0x01	
		R2		0x02	
		R13		θxθD	
through		R14		0x0E	
use		R15		0x0F	
work		R16		0x10	
send		R17		0x11	
Save					
Device		R26		0x1A	X register low byte
		R27		0x1B	X register high byte
		R28		0x1C	Y register low byte
		R29		0x1D	Y register high byte
		R30		0x1E	Z register low byte
		R31		0x1F	Z register high byte

Most instructions have direct access to all common working registers, and most of them are single-cycle instructions.

- 3 -

LGT8FX8D Series - Programming Manual 1.0.5

As shown in the figure above, each register corresponds to the address of a data memory space, which is mapped to

Data storage space. As soon as they do not really exist in the SRAM, but this unified mapping of the storage organization to visit They brought great flexibility. The X / Y / Z register can be indexed into any general register as a pointer.

\mathbf{X} / \mathbf{Y} / \mathbf{Z} register

The registers R26 ... R31 can be combined in two to form three 16-bit registers. These three 16-bit registers are mainly used for indirect Addressing address pointer, X / Y / Z register structure is as follows:

In different addressing modes, these registers are used as fixed offset, auto increment and auto decremented address pointers, For details, refer to the instruction description section.

Stack pointer

The stack is used to store temporary data, local variables, and return addresses for interrupts and subroutine calls. Need special attention Yes, the stack is not designed to grow from a high address to a low address. The stack pointer register (SP) always points to the top of the stack. Stack The pointer points to the physical space where the data SRAM is located, where the subroutine or interrupt call must hold the stack space. PUSH The instruction will decrement the stack pointer.

The location of the stack in the SRAM must be set correctly by the software before the subroutine is executed or the interrupt is enabled. General situation In this case, the stack pointer is initialized to the highest address of the SRAM. The stack pointer must be set to the high bit SRAM at the beginning site. SRAM Refer to the system data storage section for the address of the system data storage map.

Stack pointer related to the instruction

instruction	Stack pointer	description
PUSH	Increase by 1	Data is pushed onto the stack
CALL	Increase by 2	The return address of the interrupt or subroutine call is pushed onto the stack
ICALL		
RCALL		
POP	Reduced by 1	The data is fetched from the stack
RET	Reduced by 2	The return address of the interrupt or subroutine call is removed from the stack
RETI		

- 4 -

Page 11

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The stack pointer consists of two 8-bit registers allocated in the I / O space. The actual length of the stack pointer matches the system implementation turn off. In some chip implementations of the LGT8XM architecture, the data space is so small that only SPLs can satisfy addressing In this case, the SPH register will not appear.

SPH / SPL Stack Pointer Register Definition

SPH / SPL Stack Pointer Register

SPH: 0x3E (0x5E) SPL: 0x3D (0x5D) Default: RAMEND

SP R / W			SP [15: 0] R / W
Initial			RAMEND
Bit definition			
[7:0]	SPL	The stack pointer is low for 8 bits	
[15: 8]	SPH	The stack pointer is 8 bits high	

Instruction execution timing

This section describes the general timing concepts for instruction execution. The LGT8XM kernel is driven by the kernel clock (CLKcpu) The clock comes directly from the system with the clock source selection circuit.

The following figure shows the execution timing of the instruction pipeline based on the concept of the Harvard architecture and the fast access register file. This is to make The kernel can get the physical guarantee of 1MIPS / MHz execution efficiency.

СLКсри				
The first instruction	C1F	CIE		
The second instruction		C2F	C2E	
Article 3 Directive			C3F	C3E

As can be seen from the above figure, the first instruction will be read during the implementation of the second instruction. When the second instruction goes into execution Line period, while reading the third instruction at the same time. So that during the entire execution, there is no need to spend extra for reading instructions Cycle, from the pipeline point of view, to achieve every Monday to implement the efficiency of a directive.

The following figure shows the access timing of the general working register. In one cycle, the ALU operation uses two registers as

Operand, and the ALU execution result is written to the destination register during this period.

CLKcpu

All execution time Register read *ALU* operation Write back the results

- 5 -

Page 12

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Reset and interrupt handling

LGT8XM supports multiple interrupt sources. These interrupts and reset vectors in the program space correspond to a separate program Volume entrance. In general, all interrupts have separate control bits. When the control bit is set, and enabled After the kernel's global interrupt enable bit, the kernel can respond to this interrupt.

The lowest program space is retained by default as the reset and interrupt vector area. LGT8FX8D supports the complete interrupt list Please refer to the description of the interrupt section. This list also determines the priority of the different interrupts. The lower the vector address is the interrupt, The corresponding interrupt priority is higher. The reset (RESET) has the highest priority and then the INT0 - external interrupt request 0. The start address of the interrupt vector table (except the reset vector) can be redefined to the beginning of any 256-byte alignment. To be implemented by the IVSEL bit in the MCU control register (MCUCR) and the IVBASE vector base address register.

When the kernel response is interrupted, the global interrupt enable flag, I, is automatically cleared by hardware. The user can make the I bit by Can achieve interrupt nesting. So that any subsequent interruption will interrupt the current interrupt service routine. I bit in the execution interrupt After the return instruction (RETI) is set automatically, it can normally respond to subsequent interrupts.

There is a basic type of interrupt. The first type is triggered by an event, and the interrupt flag is set after an interrupt event occurs. for This interrupt, the kernel response to the interrupt request, the current PC value is directly replaced by the actual interrupt vector address,

Line corresponding to the interrupt service subroutine, while the hardware automatically clear the interrupt flag. The interrupt flag can also be passed to the interrupt The position of the flag bit is cleared by 1. If the interrupt enable bit is cleared when an interrupt occurs, the interrupt flag bit will still be set To record an interrupt event. Wait until the interrupt is enabled, this record of the interrupt event will be immediately respond. Again, if in the interruption When executed, the global interrupt enable bit (SERG.I) is cleared and the corresponding interrupt flag bit is set to record the interrupt event, etc. When the global interrupt enable bit is set, these recorded interrupts will be executed in order of priority.

The second interrupt type is when the interrupt condition is always present, the interrupt is always responding. This interrupt does not require an interrupt flag Bit. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be acknowledged.

When the LGT8XM kernel exits from the interrupt service routine, the execution flow returns to the main program. In the main program After executing one or more instructions, you can respond to other waiting interrupt requests.

It should be noted that the system status register (SREG) does not automatically save after entering the interrupt service, The interrupt service is automatically restored after returning. It must be handled by the software.

Interrupts are disabled immediately when interrupts are disabled using the CLI instruction. After the CLI instruction occurs so the interrupt is both Will not get a response. Even if the interrupt is executed concurrently with the CLI instruction, it will not be responded. The following example says How to use the CLI to avoid interrupting the write sequence of the EEPROM:

Assembly code instance IN R16, SREG ; store SREG value CL1 ; disable interrupts during timed sequence SBI EECR, EEMPE ; start EEPROM write SBI EECR, EEPE OUT SREG, R16 ; restore SREG value (including I bit)

- 6 -

Page 13

LGT8FX8D Series - Programming Manual 1.0.5

C language code instance char cSREG cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI (); EECR |= (1 << EEMPE); /* start EEPROM write */ EECR |= (1 << EEPE); SREG = cSREG; /* restore SREG value (including I-bit) */

When an interrupt is enabled with the SEI instruction, an instruction following the SEI instruction will first be preceded by an interrupt Is executed as an example of the following code:

LogicGreen Technologies Co., LTD

Assembly code instance **SEI** ; set Global Interrupt Enable **SLEEP** ; enter sleep, waiting for interrupt ; note: will enter sleep before any pending interrupt (s) C language code instance __enable_interrupt (); /* set Global Interrupt Enable */ __sleep (); /* enter sleep, waiting for interrupt */ /* note: will enter sleep before any pending interrupt (s) */

Interrupt response time

The LGT8XM core is optimized for interruptions, making any interrupts available in the four system clock cycles

response. After four system clock cycles, the interrupt service routine enters the execution cycle. In the four clocks, before the interruption

PC value is pushed onto the stack, the system execution process flow jumps to the interrupt vector corresponding to the interrupt service routine. If an interrupt occurs During a multi-cycle instruction execution, the kernel will ensure that the correct execution of the current instruction ends. If the interrupt occurs at the system In the sleep state (SLEEP), the interrupt response requires an additional 4 clock cycles. This increased clock cycle is used from the selection The synchronization period of the wake-up operation in sleep mode. For details of the sleep mode, refer to the relevant section of Power Management.

It takes 2 clock cycles to return from the interrupt service routine. In the two clock cycles, the PC is restored from the stack, Stack pointer plus 2, SREG (I) bit is set to 1.

- 7 -

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Storage subsystem

Overview

This section describes the different memory cells within the LGT8FX8D family. The LGT8XM architecture supports two main ones Department of storage space, respectively, data storage space and program storage space. In addition, LGT8FX8D internal also contains the data FLASH, Through the internal controller can realize the EEPROM interface data storage function. In addition, LGT8FX8D system also contains A special storage unit for storing system configuration information and the global device number (GUID) of the chip.

LGT8FX8D series chip contains LGT8F48D / 88D / 168D / 328D four different models; four models outside Set and package is fully compatible, the difference is FLASH program storage space and internal data SRAM, the following table comparison Clearly described the LGT8FX8D series chip different storage space configuration:

model	FLASH	SRAM	E2PROM	Interrupt vector
LGT8F48D	4KB	512B	1KB	1 instruction word
LGT8F88D	8KB	1KB	2KB	1 instruction word
LGT8F168D	16KB	1KB	4KB	2 instruction words
			Can be configured as 0K / 1K	/ 2K / 4K / 8K
LGT8F328D	32KB	2KB	(Shared with FLASH)	2 instruction words

LGT8F328D is not used internally to simulate the E2 space of the E2PROM interface; for analog E2PROM Storage space and program FLASH share, the user can according to application requirements, select the appropriate configuration.

Due to the unique implementation of the analog E2PROM interface, the system requires twice the program FLASH space to simulate the E2PROM Storage space, such as for the LGT8F328D, if the user configured 1KB of E2PROM space, there will be 2KB bytes The program space is retained, leaving the 30KB of FLASH space for storing the program.

LGT8F328D program FLASH and E2PROM shared configuration table:

model	FLASH	E2PROM
	32KB	0KB
	30KB	1KB
LGT8F328D	28KB	2KB
	24KB	4KB

8KB

16KB

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

System programmable FLASH program storage unit

The LGT8FX8D family of microcontrollers internally includes 4K / 8K / 16K / 32K bytes of on-chip programmable programmable Sequential storage unit.

- 8 -

The program FLASH guarantees at least 20,000 erase cycles. LGT8FX8D internal integrated FLASH interface control Device, can be achieved in the system programming (ISP) and the program since the upgrade function. Please refer to this chapter for details on FLASH Description of the interface controller section.

Program space can also be accessed directly through the LPM instruction (read), this feature can be applied to the application of constant search table. At the same time FLASH program space is also mapped to the system data storage space, the user can also use LD / LDD / LDS real FLASH space is now on the visit. The program space is mapped to the address range starting from the data memory space 0x4000. As shown below:

LD/LDD/LDS

SRAM data storage unit

The LGT8FX8D family of microcontrollers is a relatively complex microcontroller that supports a variety of different types of peripherals. Some peripheral controllers are allocated in 64 I / O register spaces. Can be accessed directly through the IN / OUT instruction. others Peripheral control register is allocated in the 0x60 ~ 0xFF area, because this part of the space is mapped to the data storage space, Can only be accessed via ST / STS / STD and LD / LDS / LDD instructions.

LGT8FX8D system data storage space from the 0 address, respectively, mapped a common working register file, I / O empty Inter-expansion I / O space and internal data SRAM space. The beginning of the 32-byte address corresponds to the LGT8XM kernel 32

- 9 -

Page 16

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Generic working register. The next 64 addresses are standard I / O spaces that can be accessed directly through the IN / OUT instruction. Then the 160 addresses are extended I / O space, followed by 1024 bytes of data SRAM. Starting at 0x4000 To 0xBFFF end of this part of the space, mapping FLASH program storage unit.

The system data stores the unified mapping space

The system supports five different addressing modes that can cover the entire data space: direct access, indirect access with offset, between Access, indirect access to the address before the visit, indirect access to the address after access. General working register R26 to R31 is used for indirect access to address pointers. Indirect access can address the entire data storage space. Indirect with offset address Asked to be addressed to 63 address spaces near the Y/Z register base address.

When using the register indirect access mode that supports auto-increment / decrement of address, the address register X / Y / Z will be used before the access occurs / Automatically decremented / incremented by hardware. Please refer to the instruction set description section.

General I / O register

LGT8FX8D I / O space has three general-purpose I / O registers GPIOR2 / 1/0, these three registers can use IN / OUT means Make access to user-defined data.

EFLASH / E2PROM interface controller

LGT8FX8D internal implementation of a flexible and reliable E2PROM interface controller, you can use the system has the number According to FLASH storage space, to achieve byte access to read and write storage space, to achieve similar E2PROM storage applications; E2PROM Interface simulation using erasure equalization algorithm, you can increase the data FLASH cycle of about 1 times, to ensure that 50,000 Times the erase cycle.

FLASH interface controller to achieve the FLASH program space on-line erase operation, you can achieve online through the software automatically Upgrade the functionality of the firmware. Through the FLASH controller to access the program FLASH space, only supports 16-bit wide read and write access. E2PROM and program FLASH space access details, please refer to the following detailed description.

LogicGreen Technologies Co., LTD

LGT8FX8D Series - Programming Manual 1.0.5

LGT8F48D / 88D / 168D FLASH / E2PROM controller structure diagram

LGT8F328D FLASH / E2PROM controller structure diagram

	EFLASH Controller	16b		
bus			FFLASH	32KB
I/0		8b	Wrapper	FLASH
	E2PROM	16b		
	Controller			

FLASH / E2PROM interface read and write access

FLASH controller All controller registers can be accessed via I / O space. On the FLASH and E2PROM empty Between the operation, but also through the configuration and control of these registers to achieve. Detailed use of the method will be described in the Register section Separate instructions.

FLASH / E2PROM write access time, please refer to the table given later. FLASH controller can be automatically updated when The state of the pre-operation, the user software can determine whether the current operation is completed by detecting these states, thereby starting the next word Section of the operation. If the user code contains the FLASH / E2PROM operation, then you need to follow some principles. first First, during power-up or power-down, V cc rises and falls slowly, causing the device to run for a long time at low voltage, This will affect the current system to run the maximum frequency of the minimum voltage requirements, will also have an impact on the FLASH programming operation. At this point you need to take the necessary protective measures. This will be described in detail in the next section.

In order to avoid misuse of the E2PROM, the operation of the E2PROM must follow a special process. Please refer to this Section The final description of the EFLASH / E2PROM control register.

When the EFLASH / E2PROM is operated, the execution of the LGT8XM core will be held until the operation is complete. To resume operation.

- 11 -

Page 18

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

FLASH / E2PROM operation of the protection measures

If the VCC voltage is low, the data operation of the FLASH / E2PROM may cause an error due to the voltage being too low. with Using the board-level E2PROM chip, you can use the same design.

FLASH / E2PROM data under low pressure operation errors may be caused by two reasons. First, a normal one

FLASH / E2PROM operation requires a minimum operating voltage, below this voltage, the operation will fail and cause data to occur error. The second reason is that the kernel is running at a certain frequency, it also requires a minimum voltage requirement, when below this Voltage, while the CPU and keep running at this frequency, will lead to the implementation of the instruction error, making FLASH / E2PROM The operation has failed.

You can avoid similar problems by the following simple method:

When the supply voltage is low, let the system into the reset state. This can be done by configuring the internal low voltage detection circuit (VDT) achieve. If VDT detects that the current operating voltage is below the set threshold, VDT will output a reset signal. in case VDT threshold can not meet the needs of the application, you can consider adding a reset circuit in the external.

I / O register space

For a detailed definition of I / O space, refer to the "Register Overview" section of the LGT8FX8D Data Sheet.

LGT8FX8D so the peripherals are assigned to the I / O space. All I / O space addresses can be LD / LDS / LDDD As well as ST / STS / STD instruction access. The accessed data is passed through 32 general purpose working registers. In 0x00 ~ 0x1F The I / O registers can be accessed by bit addressing instructions SBI and CBI. In these registers, the value of a bit can be To use the SBIS and SBIC instructions to detect the execution of the program. Please refer to the instruction set description section.

When using the IN / OUT instruction to access the I / O register, the address between 0x00 and 0x3F must be addressed. When using LD Or the ST instruction accesses the I / O space, the mapping address must be mapped through the I / O space in the system data memory Access (plus offset 0x20). Some other allocations in the extended I / O space of the peripheral registers (0x60 \sim 0xFF), only Access using the ST / STS / STD and LD / LDS / LDD instructions.

In order to be compatible with future devices, the reserved bit must be written to 0 when writing. Can not write on reserved I / O space operating.

Some registers include a status flag that needs to be written to 1 to clear. It should be noted that the CBI and SBI instructions Only support a specific bit, so CBI / SBI can only work in the register containing these status flags. In addition, CBI / SBI instructions can only work in the 0x00 to 0x1F address range of the register.

- 12 -

Page 19

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register description

FLASH / E2PROM address register - EEARH / EEARL

	EEARH / EEARL
EEARH: 0x22 (0x42)	Default: 0x0000
EEARL: 0x21 (0x41)	
EEAR	EEAR [15: 0]
R / W	R / W
Initial value	0x0000
Bit definition	

[7: 0] EEARL EFLASH / E2PROM access address is low 8 bits.

[14:8] EEARH EFLASH / E2PROM access address is high 7 digits [15] Keep not used

When using the EFLASH / E2PROM controller to access the program FLASH area, EEAR [14: 1] is used for access to 2 bytes Align the entire program space. EEAR [0] is only used when accessing the data register EEDR. Please refer to the following Description of the EEDR data register.

When using the EFLASH / E2PROM controller to access the data FLASH area (E2PROM), EEAR [12: 0] is used to access Maximum 8K bytes of E2PROM space. Access at this time supports 8/16 bit mode, no matter what mode, EEAR Are byte-aligned addressing.

EEAR allocation table:

model	FLASH	E2PROM	EEAR effective bit wide
LGT8F48D	4KB	1KB	EEAR [9:0]
LGT8F88D	8KB	2KB	EEAR [10: 0]
LGT8F168D	16KB	4KB	EEAR [11: 0]
LGT8F328D	32/30/28/24 / 16K	0/1/2/4 / 8K	EEAR [12: 0]

FLASH / E2PROM Data Register - EEDR

		EEDR - FLASH / E2PROM data register
EEDR: 0x20 (0x40)		Default: 0x00
EEDR		EEDR [7: 0]
\mathbf{R} / \mathbf{W}		R / W
Initial value		0x00
Bit definition		
[7:0]	EEDR	EFLASH / E2PROM data register

important:

LGT8FX8D internal FLASH for the 16-bit interface, read / write data for the smallest unit of 16 bits. So FLASH control

- 13 -

Page 20

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The internal data register is 16 bits. EEAR [0] is used to address the high and low 8 bits.

EEDR is an 8-bit wide data register whose meaning varies depending on the access pattern. When using FLASH When the controller accesses the internal program FLASH, the FLASH controller operates in 16-bit mode, and the EEDR The internal 16-bit data register interface will work with EEAR [0]. When using the FLASH controller to access data FLASH, FLASH controller access interface can work in 8/16-bit mode.

When working in 8-bit mode, EEDR is the actual data that needs to be read / written. EEAR [12: 0] is used to find Address up to 8K bytes of E2PROM space. The hardware will automatically complete the 8-bit data to 16-bit data access interface Conversion, the user does not need any additional operation.

When working with 16-bit mode, EEDR will also be used as an interface to access internal data that will work with EEAR [0] Work. In these two modes, the user needs to set the number of FLASH to be written by EEAR [0] and EEDR According to, or by EEAR [0] and EEDR, read out the required byte data

The following figure illustrates the relationship between the I / O register EEAR / EEDR and the FLASH controller's internal interface:

EFLASH

EEAR [0]

EEDR

When using 8-bit mode, EEAR [12: 0] together with EEDR update the data of the specified byte position, the rest of the location The data is automatically patched by the control logic inside the FLASH controller. Users do not have to care about specific implementations. When using 16-bit mode, the user needs to update 16-bit data, that is, 2 bytes of data. Hardware according to EEAR [0] To decide to update the upper 8 or 8 bits. Here's how to update your data:

OUT	EEARL, \$ 0
OUT	EEDR, BYTE0
OUT	EEARL, \$ 1
OUT	EEDR, BYTE1
# Set the	programmed destination address
OUT	EEARL, ADDRL
OUT	EEARH, ADDRH

- 14 -

Page 21

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

FLASH / E2PROM Configuration Register - ECCR (LGT8F328D specific)

ECCR - FLASH / E2PROM	A Configuration register (for LGT8F328D)
-----------------------	--

ECCR: 0x36 (0x56)					Default: 0x00				
ECCR	WEN	EEN	-	-	-	-	EC1	EC0	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	-	-	-	-	\mathbf{R} / \mathbf{W}	R / W	
Initial value	0	0	0	0	0	0	0	0	
Bit definition									

		ECCR write enable control
[7]	WEN	Before modifying the ECCR, you must first write WEN 1 and then update it in 6 system cycles
		ECCR register contents
		E2PROM enabled, only valid for LGT8F328D
[6]	EEN	1: Enable E2PROM analog interface, will be part of the space from 32KFLASH
		0: disable E2PROM analog interface, 32KFLASH all for program space
[5: 2]	-	Keep not used
		E2PROM space configuration
		00: 1KB E2PROM, 30KB program FLASH
[1:0]	EC [1:0]	01: 2KB E2PROM, 28KB program FLASH
		10: 4KB E2PROM, 24KB program FLASH
		11: 8KB E2PROM, 16KB program FLASH

FLASH / E2PROM Controller Control Register - EECR

			EECR - FLA	SH / E2PROM	l control regist	er		
EECR: 0x	1F (0x3F)			Default: 0x	:00			
EECR	EEPM3	EEPM2	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE
R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W

Initial value	0	0	0	0		0	0	0	0	
Bit definition										
		EFLA	SH / EPROM	A access m	ode contro	l bit				
[7: 4] E		[3]	[2]	[1]	[0]	Mode	e description			
		0	0	0	x	8-bit	8-bit mode read / write E2PROM (default)			
	EEPM [3: 0]	0	0	1	x	16-bi	16-bit mode read / write E2PROM			
		1	х	0	0	E2PR	OM erase (opti	onal operation)		
		1	х	0	1	Progr	am FLASH era	se (page erase)		
		1	x	1	0	Progr	am FLASH pro	gramming		
		1	х	1	1	Reset	the FLASH / F	2PROM contro	oller	
		FLAS	H / E2PRON	I ready int	errupt enab	ole control	. Write 1 enable	d, write 0 disat	oled. When EEPE	is
[3]	EERIE	After t	he hardware	is automa	tically clea	red, the E2	2PROM ready i	nterrupt is activ	e. During EPRON	A operation,
		Does r	not produce t	his interru	pt					

- 15 -

Page 22

LGT8FX8D Serie	s - Programming	Manual 1.0.5 LogicGreen Technologies Co., LTD
		FLASH / E2PROM programming operation enable control bits FEMPE is used to control whether FEPE is valid, when both FEMPE is set to 1 and FEPE is 0
[2]	EEMPE	After setting the EEPE to 1 for the next four cycles, the programming operation will be initiated. Otherwise programme
		Invalid operation. After four cycles, EEMPE is automatically cleared
[1]	EEPE	FLASH / E2PROM programming operation enable bit
[0]	EERE	E2PROM read enable bit, the data will be valid after two system cycles

FLASH / E2PROM read and write control timing

The EECR register controls the implementation of all FLASH operations. Where EEPM mainly controls the operating mode and selection Type of operation. EEPM [3] The main choice is to operate the data FLASH (E2PROM) or program FLASH. When the operation is right Like the program FLASH, the data interface is fixed to 32-bit mode. When the operation target is data FLASH (E2PROM) You can choose a different data width. The default is 8-bit mode, this mode operation is the most simple and intuitive. FLASH controller in the realization of E2PROM interface, the internal has been achieved when necessary to automatically erase the data FLASH Logic, so the EPROM erase command is optional, and this command is only used if the user needs to perform a separate erase. EEMPE controls FLASH's erase / write timing, including program FLASH and E2PROM. Must be controlled at EEMPE Under the action to complete the response. EEPE can initiate all erase and program operations during EEMPE active timing. The specific type of operation is determined by EEPM [3: 0]. Read the E2PROM relatively simple, set the target address and mode, write EERE bit is the target address The corresponding 32-bit data is read into the FLASH controller, and the user can read the word of interest through the EEDR register Section. FLASH controller does not achieve the program FLASH space read operation, the user can easily use LPM or The program uses the LD / LDD / LDS instruction at the address of the data unified mapping space.

Data FLASH / E2PROM programming process examples

1. 8 -bit mode, programming E2PROM

- Check the EEPE bit and wait for the FLASH controller to be idle
- Set the destination address to EEAR [8: 0]
- Set new data to EEDR
- Set EEPM [3: 1] = 000, EEPM [0] can be set to 0 or 1
- Set EEMPE = 1 while EEPE = 0
- Set the EEPE = 1 in four cycles

When the setting is complete, the FLASH controller will start the programming operation, during programming CPU will remain in the current instruction Address, until the operation is completed will continue to run. In the programming process, if you need to erase the data FLASH,

The FLASH controller will automatically start the erase process.

2. 16 -bit mode, programming E2PROM

- Check the EEPE bit and wait for the FLASH controller to be idle
- Set the 16-bit data by EEAR [0] and EEDR, refer to the EEDR register definition section

- Set the destination address to EEAR [12: 0]. Note that here is the byte alignment address, FLASH controller used EEAR [14: 1] as the address to access the FLASH.
- Set EEPM [3: 1] = 001, EEPM [0] can be set to 0 or 1
- Set EEMPE = 1 while EEPE = 0
- Set the EEPE = 1 in four cycles

- 16 -

Page 23

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

- 3. 8 -bit mode, read E2PROM
 - Check the EEPE bit and wait for the FLASH controller to be idle
 - Set the destination address to EEAR [8: 0]
 - Set EEPM [3: 1] = 000
 - Set EERE = 1 to start E2PROM read operation
 - Wait 2 cycles (perform two NOP operations)
 - The data corresponding to the destination address is updated to the EEDR register

4. 16 -bit mode, read E2PROM

- Detect the EEPE bit, waiting for the FLASH controller to be idle
- Set EEAR [12: 0] as the destination address and address 2 bytes
- Set EEPM [3: 1] = 001 to enable 16-bit interface mode
- Set EERE = 1 to start E2PROM read operation
- Wait for 2 system clock cycles (two NOP instructions are executed)
- The data corresponding to the destination address is updated to the internal 16-bit register of the controller. The user can use EEAR [0] And EEDR read the specified byte of data or all data.

5. Program FLASH erase operation

- Check the EEPE bit and wait for the FLASH controller to be idle
- Set EEAR [14: 0] for the target page address to be erased, the program FLASH page size is 1K bytes,
- So EEAR [14:10] will be set to 0 as the page address, EEAR [9:0]
- Set EEPM [3: 0] = 1X01, where EEPM [2] can be set to 0 or 1
- Set EEMPE = 1 while EEPE = 0
- In the four cycles, set EEPE = 1 to start the program FLASH erase process

6. Program FLASH programming operation

- Check the EEPE bit and wait for the FLASH controller to be idle
- Set the 16-bit programming data via EEAR [0] and EEDR
- Set EEAR [14: 1] as the destination address, where the address is 2 bytes
- Set EEPM [3: 0] = 1X10, where EEPM [2] can be set to 0 or 1
- Set EEMPE = 1 while EEPE = 0
- In the four cycles, set EEPE = 1 to start the FLASH programming flow

[important]

For the LGT8F328D, it is necessary to first enable the ECCR register by performing the E2PROM operation

E2PROM controller and configure the size of the E2PROM. The following operation is the same as LGT8F48D / 88D / 168D.

Page 24

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

General Purpose I / O Registers - GPIOR2

		GPIOR2 - General Purpose I / O Register 2
GPIOR2: 0x21	B (0x4B)	Default: 0x00
GPIOR2		GPIOR2 [7: 0]
\mathbf{R} / \mathbf{W}		R / W
Initial value		0x00
Bit definition		
[7:0]	GPIOR2	General purpose I / O register 2 for storing user-defined data

General Purpose I / O Register - GPIOR1

		GPIOR1 - General Purpose I / O Register 1				
GPIOR1: 0x2	A (0x4A)	Default: 0x00				
GPIOR1		GPIOR1 [7: 0]				
\mathbf{R} / \mathbf{W}		R / W				
Initial value		0x00				
Bit definition						
[7:0]	GPIOR1	General purpose I / O register 1 for storing user-defined data				

General Purpose I / O Register - GPIOR0

		GPIOR0 - General Purpose I / O Register 0
GPIOR0: 0x1E	(0x3E)	Default: 0x00
GPIOR0		GPIOR0 [7: 0]
\mathbf{R} / \mathbf{W}		R / W
Initial value		0x00
Bit definition		
[7:0]	GPIOR0	The general purpose I / O register 0 is used to store user-defined data

- 18 -

Page 25

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

System clock distribution

The LGT8FX8D supports multiple clock inputs. The system can work in three main clock sources, namely internal 32KHz Calibrated RC Oscillator, Internal 32MHz Calibrated RC Oscillator, and External 400KHz ~ 20MHz Crystal Input. The following figure shows the LGT8FX8D clock system distribution, CMU is the center of the entire clock management, responsible for the system clock frequency, The same module to generate a separate clock and control the clock and so on. In general applications, do not all the clock with the same When working in order to reduce system power consumption, the system power management switches the unused module clock according to the different sleep modes. For details on the operation, refer to the section on power management.

CPU_clk

The CPU clock is used to drive the LGT8XM core and SRAM operation. Such as driving the general working register, the status sent Such as the deposit. After the CPU clock is stopped, the kernel will not continue to execute the instructions and perform the calculations.

IO_clk

The IO clock is used to drive most peripheral modules, such as timers / counters, SPI, USART, and so on. The IO clock is also used for flooding Active external interrupt module. When the IO clock is stopped due to hibernation, some can use the peripheral part of the wake-up system In standalone clock or asynchronous mode. For example, TWI's address recognition function can wake most of the sleep mode, at this time The address recognition part operates in asynchronous mode.

Flash_clk

The FLASH clock is used to generate the FLASH interface access timing. The FLASH clock is homologous to the system clock. FLASH clock master To use the program through the FLASH controller on the program FLASH and data FLASH access.

Asy_clk

Asynchronous timer clock. The timer / event counter can be driven directly using an external clock or crystal (32.768K). This independence Clock mode, the timer can remain running while the system is in sleep mode.

- 19 -

Page 26

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Clock source selection

LGT8FX8D support four kinds of clock source input, the user can PMCR register to achieve the clock source enable control As well as the completion of the main clock switch. The following is the control structure of the PMCR:

	PMCR [3: 0]		PMCR [4]	PMCR [6: 5]	
Calibrated RC 32MHz	RCM_EN	1/16	MU X		WD1
Calibrated RC 32KHz	RCK_EN			M U X	СМІ

0SCK_EN 400K~20M 0SCM_EN OSC

> 32K ~ 400K: using OSCK_EN 400K ~ 20M: using OSCM_EN

LGT8FX8D internal OSC oscillator can work in high frequency and low frequency two modes, the user needs according to the external crystal The actual size of the internal OSC oscillator is controlled in the correct mode. The same internal RC oscillator is also divided into high frequency and Low frequency two kinds. The lowest 4 bits of the PMCR register are used to control these four clock sources. The control relationship is as follows:

PMCR	Corresponds to the clock source
PMCR [0]	32MHz RC enable control, 1 enabled, 0 off
PMCR [1]	32KHz RC enable control, 1 enabled, 0 off
PMCR [2]	$400K\sim 20MHz\ OSC$ mode enabled, 1 enabled, 0 closed
PMCR [3]	$32K \sim 400K$ OSC mode enabled, 1 enabled, 0 off

LGT8FX8D system power, the default use of 32MHz RC as the system clock source, the kernel work in the clock source of 8 points Frequency (2MHz). The user can change the default configuration by setting the PMCR register and the system prescaler register (CLKPR).

If the user needs to change the main clock source configuration, it is necessary to ensure that the clock source after switching is stable before switching the clock. State. It is therefore necessary to enable the required clock source by PMCR [3: 0] before switching to the master clock source and wait for the clock to stabilize After the set to switch.

When the user switches the master clock to the external crystal, although the user enables the external crystal, but does not rule out the configuration error or Crystal failure can not cause crystal vibration. If you switch to an external crystal at this time, the system will stop working immediately after switching. because This, from the system reliability considerations, it is recommended by opening the watchdog timer, from the software design point of view to avoid such questions question.

After the clock source is enabled and waiting for stabilization, the master clock can be switched by PMCR [6: 5]. Where PMCR [5] is used to select Yes Internal RC oscillator and external crystal, PMCR [6] is used to select the high-speed clock source and low-speed clock source.

Internal 32KHz RC oscillator

- 20 -

Page 27

1

0

External 32K \sim 400KHz low-speed crystal

Clock source control timing

1

1

In order to protect the PMCR register from accidental modification, the modification of the PMCR register requires strict installation of the specified timing Row. The highest bit of the PMCR register (PMCR [7]) is used to implement timing control. Before modifying the other bits of the PMCR, the user must The PMCR [7] must first be set and the value of the other registers of the PMCR should be changed during the six cycles after the set operation. 6 After the cycle, the direct modification to the PMCR will fail.

Below to switch to the external high-speed crystal, for example, list the recommended steps:

- (1) Enable the clock source
 - Set PMCR [7] = 1
 - Set PMCR [2] = 1 in six cycles to enable external high-speed mode external crystal
 - wait for external crystal stability (waiting time due to different crystal and different, generally us level can wait)

(2) toggle the main clock source

- Set PMCR [7] = 1
- Set PMCR [6:5] = 01 in six cycles, the system will automatically switch the working clock to the external crystal
- Perform several NOP operations to improve stability (optional operation)

[Note]: In the above operation to switch the main clock, to ensure that the current system clock to work properly, in the switch to the external crystal After the vibration, you can turn off the internal **RC** oscillator before .

- twenty one -

Page 28

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

System clock prescaler control

The LGT8FX8D has a system clock prescaler internally that can be controlled by the clock prescaler register (CLKPR). This function can be used to reduce system power consumption when the system does not require very high processing power. Prescaler settings for system support The clock source is valid. Clock prescaler can affect the kernel execution clock and so the synchronization peripherals.

When switching between different clock prescaler settings, the system clock prescale ensures that no hair is generated during the switching process Thorns, but will ensure that there will be no high frequency of the middle state. The frequency switching is performed immediately, and when the register change takes effect,

Up to 2 to 3 current system clock cycles, the system clock switches to the new divide clock.

In order to avoid erroneous operation on the clock divider register, the modification to CLKPR must also follow a special timing flow

Cheng:

• Set the clock prescaler change enable bit (CLKPCE) to 1, CLKPR other bit is 0

• Write the required value to CLKPS in four cycles, while CLKPCE is written to 0

Before changing the clock prescaler register, it is necessary to disable the interrupt function to ensure that the write timing can be performed intact. Refer to the Register Description section of this section for a detailed definition of the main clock prescaler register CLKPR.

[important] :

LGT8FX8D maximum operating frequency of 20MHz, so when the choice of internal 32MHz RC as the main clock source, be sure to Make sure CLKPR is set to the correct frequency division (minimum 2).

Internal RC oscillator calibration

The LGT8FX8D contains two calibratable RC oscillators inside, and can be calibrated to within \pm 1% accuracy. its

The 32MHz RC is used by default for the system operating clock.

Each LGT8FX8D is manufactured before the internal 32MHz RC has been calibrated, and the calibration value written to the system with

Set the information area. The user's client accesses this calibration value through the RCCAL register of the I / O register space. The internal 32KHz RC is not calibrated before production, and if the user needs a very accurate low frequency clock,

You can calibrate the RC oscillator, and the calibration value written to the LGT8FX8D comes with the data FLASH. At each time After the chip is started, the calibration value is read by software and written to the RCKCAL register to complete the 32KHz RC oscillator Of the calibration. Please refer to the following description of the specific calibration method.

Internal *32KHz RC* calibration method:

Before calibrating the internal 32KHz RC, it is necessary to be able to measure the current internal 32KHz clock frequency. Relatively simple side The method is to switch the system clock to the internal 32KHz RC oscillator. And then output a relatively easy to measure by I / O Square wave The frequency of the internal RC is obtained by measuring the square wave frequency.

Above is the RC calibration method, 32KHz RC oscillator calibration method and the same. After getting RCKCAL, you can To write its value to a reserved area of the data FLASH (E2PROM) for subsequent software calibration.

- twenty two -

Page 29

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register definition

32MHz RC	Oscillator C	alibration Register	- RCCAL							
		RCCAL	- 32MHz RC	Calibration Regis	ster					
RCCAL: 0x66			Defaul	t: 0x00						
RCCAL			R	CCAL [7: 0]						
R/W				R / W						
Initial value				0x00						
Bit definition										
[5:0]	RCCAL	6bit RC calibration v Value replacement.	alue, the system	n will power up, t	he value of the re	egister will be t	he system config	uration informa	ation in the RC c	alibration
[7: 6]	-	Keep not used								
PMCR: 0xF2	e managem	PMCI	R - clock sourc Defa	e management reg uult: 0x01	zister					
PMCR	PMCE	CLKFS / CLKSS	WCLKS	OSCKEN	OSCMEN	RCKEN RO	CMEN			
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	$\mathbf{R} \ / \ \mathbf{W}$	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}			
Initial value	0	0/0	0	0	0	0	1			
Bit definition										
[0]	RCMEN	Internal 32MHz	RC oscillator of	enable control, 1 e	nabled, 0 disable	ed				
[1]	RCKEN	Internal 32KHz	RC oscillator e	nable control, 1 e	nabled, 0 disable	d				
[2]	OSCMEN	External high fro	equency crystal	l enable control, 1	enabled, 0 disab	led				
[3]	OSCKEN	External low fre	quency crystal	enable control, 1	enabled, 0 disabl	ed				
[4]	WCLKS	WDT clock sour	rce selection, 0	- select internal 1	MHz / RC; 1 - ir	ternal 32KHz				
[5]	CLKSS	Main clock sour	ce selection co	ntrol, select the cl	ock source type,	refer to the clo	ck source selecti	on section		
[6]	CLKFS	Main clock sour	ce frequency c	ontrol, select the o	clock frequency t	ype, refer to th	e clock source se	lection section		

Before changing other locations of the PMCR, you must first set this bit and then in four cycles

The PMCR register changes the enable control bits.

Set the value of the other bits

[7]

PMCE

LogicGreen Technologies Co., LTD

Master cloc	k prescaler	register - CL	KPR						
			CLKPR - Mas	ter clock pre	escaler register				
CLKPR: 0x61	x61 Default: 0x03								
CLKPR	CLKPCE CLKOENI CLKOEN0 - CL					KPS3 CLKPS2 CLKPS1 CLKPS0			
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	
Initial value	0	0	0	-	0	0	1	1	
				- twenty th	ree -				

Page 30

Bit definitior	1								
		Clock presca	ler selection b	it					
		CLKPS3	CLKPS2	CLKPS1	CLKPS0	Frequency division parameters			
		0	0	0	0	1			
		0	0	0	1	2			
		0	0	1	0	4			
[2, 0]	OL LADO	0	0	1	1	8 (default configuration)			
[3: 0]	CLKPS	0	1	0	0	16			
		0	1	0	1	32			
		0	1	1	0	64			
		0	1	1	1	128			
		1	0	0	0	256			
			Othe	er values		Keep it			
[4]	-	Keep not use	ed						
[5]	CLKOEN0	Set whether	the system clo	ck is output on	the PB0 pin				
[6]	CLKOEN1	Set whether	the system clo	ck is output on	the PE5 pin				
		Clock prescaler changes clock control							
[7]	CLVDCE	Before chang	ging the other l	oits of the CLK	PR register, you n	nust first set CLKPCE to 1,			
[/]	ULKPUE	And then set	the other bits	in the next four	system cycles. At	fter the four cycles,			
		CLKPCE is	automatically of	cleared.					

32KHz RC Oscillator Calibration Register - RCKCAL

LGT8FX8D Series - Programming Manual 1.0.5

		RCKCAL - 32MHz RC Calibration Register
RCKCAL: 0x67		Default: 0x00
RCKCAL		RCKCAL [7: 0]
\mathbf{R} / \mathbf{W}		\mathbf{R} / \mathbf{W}
Initial value		0x00
Bit definition		
[5: 0]	RCKCAL	6bit RC calibration value for writing calibration values to the RCKCAL register for 32 kHz RC oscillation Calibration of the device. Refer to the RC calibration section of this chapter for specific calibration methods.
[7: 6]	-	Keep not used

- twenty four -

Page 31

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Power management

Overview

Sleep mode is used to turn off unused modules in the MCU, thereby reducing system power consumption. LGT8FX8D offers non-Often flexible and diverse sleep mode and module controller, the user can be based on the application, to achieve the best low-power configuration.

When the low voltage detection (LVD) module is enabled, the LVD will continue to operate in Sleep mode. In order to further reduce the system Power consumption, you can enter the sleep mode before you turn off.

LGT8FX8D support power-down mode, power-down mode, the system's digital part, most of the I / O and analog modules will In a power-down state. Power-down mode minimizes system power consumption. Power-down mode can only be woken up by the specified external pin The process is consistent with the system power-up process. The software can get the status of the system by reading the MCU status register.

The LGT8FX8D internally includes a precision calibrable 32KHz RC oscillator that allows the user to Task, the system clock is switched to 32KHz RC, using the appropriate sleep mode. This can also be achieved in non-power-down mode The ideal system power consumption. If the user external 32768Hz crystal, you can also switch the main clock to the external crystal, then After the closure of the unused clock source and other analog modules, and then enter the sleep mode, so you can further save power Consumption.

System power management diagram:

As shown in the figure above, the LGT8FX8D controls the entire system through the Sleep Mode Controller (SMU) and the Clock Management Unit (CMU) Power consumption of the system. From the level of power savings, we can divide the power consumption into three levels, the first level is sent through the PRR The register control module operates the clock by turning off the clock without using the module, saving the system to run the dynamic power consumption. General situation Circumstances, this level can save power consumption is not obvious. The second level is by switching the main clock source to the low frequency clock and turning off Closed with no use of the clock source module and other analog modules, this model can basically get very impressive system running Power consumption and hibernation power consumption. The third level is through the system into the power (Power / off) mode, power off mode LGT8FX8D The operating power is minimal, and this mode can only be woken up by an external interrupt pin. Wake up from power down mode, the software can pass The MCUSR register reads the state before reset.

LGT8FX8D Series - Programming Manual 1.0.5

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

LogicGreen Technologies Co., LTD

Sleep mode

LGT8FX8D supports five sleep modes, the user can choose the appropriate sleep mode according to application requirements. SMCR deposit Device contains the sleep mode control settings, the implementation of SLEEP instructions, the kernel into sleep mode. To get more ideal Sleep power, it is recommended that the kernel into the sleep mode before the closure of all unused clock and analog modules. But need to note It is intended that some wake-up sources need to work clocks, and if you need to use such wake-up sources, keep the relevant clock source Working state.

Sleep mode and wake mode:

	Valid clock		Wake source					
	FLASH_CLK CP ADC_ASY_ U.C. IO CLK	PIN - Cha	nge ,	TWI Addr	ess mer2		Other	Other
Sleep Mode	LK LK CLK		INT INT0	viaicn	ADC	WD T	INT	I/O
Idle	XXXX		Х	Х	XXXX			Х
ADC Noise	XX		Х	Х	XXX			
Reduction								
Power / Down		Х	Х	Х		Х		
Power / Off S0			Х			Х		
(With RC32K)								
Power / Off S1			Х					
(Without RC32K)								

If you need to enter the above five kinds of sleep mode, SMCR in the SE bit must be set to enable sleep mode control. then Execute a SLEEP instruction. SM0 / 1/2 in SMCR is used to select a different sleep mode. Please refer to the specific information Test the following description.

When the MCU is in Sleep mode, if the wake source is active, the MCU will wake up after 4 cycles and continue execution instruction. If the interrupt remains active, the interrupt will also respond immediately to the interrupt service routine. If in SLEEP mode A system reset occurs and the MCU will be woken up and executed from the reset vector.

When the MCU is in Power / Off mode, the system can wake up via external interrupt INT0 / 1, wake up after the MCU will Continue from the previous position before sleep.

IDLE mode

When SM2 ... 0 is set to 000, after the SLEEP instruction is executed, the MCU enters IDLE mode and IDLE mode will be turned off Out of the kernel working clock, in addition to other peripherals can work properly.

IDLE mode can be awakened by external interrupts and internal interrupts. If you do not need to use the comparator and ADC To wake up the source, it is recommended to turn it off.

IDLE mode because only the kernel to run off the clock, it can not be significantly reduced power consumption. IDLE mode , The kernel will also stop executing and fetch instructions, thus reducing the power consumption of the internal program FLASH.

But IDLE mode has a more flexible way to wake up, the user can reduce the system by reducing the main clock and do not need Of the module to get more ideal running power consumption.

- 26 -

Page 33

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ADC noise suppression mode

When SM2 ... 0 is set to 001, the MCU enters the ADC noise suppression mode after executing the SLEEP instruction. In this mode, The kernel and most peripherals will stop working, ADC, external interrupt, TWI address match, WDT, and work on asynchronous

Clock mode 2 / timer 2 can work normally.

ADC noise always used to provide a good working environment for ADC conversion. Reduce the number of modules

Quasi-converted high frequency interference. After entering this mode, the ADC will automatically start the sample conversion, the converted data is saved to the ADC number

After the register, the ADC conversion end interrupt will wake the MCU from ADC noise mode.

Power / Down mode

When SM2 ... 0 is set to 010, the MCU enters Power / down mode after executing the SLEEP instruction. This pattern , The system will turn off the working clock of all modules. This mode can only be used because the working clock of all modules is turned off Wake-up via asynchronous mode, external interrupt, TWI address match, and WDT operating in independent clock source mode Generates a wake-up signal in this mode.

This mode can turn off all modules except the master clock source. In order to achieve a more ideal operating power, it is recommended to enter Before entering this mode, switch the system master clock to internal 32K RC or external 32KHz low frequency crystal, and then turn off the To the unused clock source and the analog module.

Power / Off S0 mode

When SM ... 0 is set to 110, the MCU will enter Power / Off S0 mode after executing the SLEEP instruction. enter After power / Off S0, other clock sources are turned off except for internal 32KHz RC. This mode can be externally interrupted INT0 / 1 wake-up; if the WDT interrupt function is enabled, it can also be used to wake up the WDT.

Power / Off S1 mode

When SM ... 0 is set to 011, the MCU will enter Power / Off S1 mode after executing the SLEEP instruction. enter Power / Off S0, all system clocks are turned off. This mode can only be woken up by an external interrupt INTO / 1.

Before entering Power / Off mode, you need to enable the wake-up source in advance and set the appropriate wake-up condition; for external interrupt Wake up, the user needs to set the interrupt enable and configure the trigger level according to the application needs.

FLASH power control and fast wakeup

When the system is in SLEEP mode, the kernel will not continue to execute the instruction, then you can choose to turn off the FLASH power Source to achieve lower standby power consumption. This function can be implemented by the FPDEN bit control of the MCUCR register;

In Power / Off mode, the system can use an external interrupt or WDT wake-up, in order to filter out the external signal may Of the interference, the internal wake-up circuit contains a configurable filter circuit, the user can select the appropriate filter width degree. The configuration of the filter circuit can be implemented by the FWKPEN of the MCUCR register.

MCUCR [FWKPEN] Filter width control:

FWKPEN	Filter width
0	260us (default)
1	32us

- 27 -

Page 34

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register	d	lescri	ption
regioter	~		P *** 0 **

Sleep mode control register - SMCR

		SMCI	R - Sleep mode control regi	ster			
SMCR: 0x33 (0x53	3)		Default: 0x0	0			
SMCR			SM2	SM1	SM0	SE	
R / W		-	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	
Initial value		-	0	0	0	0	
Bit definition							
		Sleep mode ena	ble control bit, set to 1, the	implementation	of SLEEP instruc	tion, the kernel wi	11
[0]	SE	What mode. Th	e SE bit protects the system	n from accidental	llv entering sleen	mode. It is recomm	ne

[0]

enter the sleep

What mode. The SE bit protects the system from accidentally entering sleep mode. It is recommended that the user set this bit After 1, followed by the SLEEP instruction. After waking up, it is recommended to clear the SE bit immediately.

		Sleep mo	ode selection		N 1 1 1 2
		SM2	SM1	SM0	Mode description
		0	0	0	IDLE mode
		0	0	1	ADC noise suppression mode
[3:1]	SM	0	1	0	Power / Down mode
		0	1	1	Power / Off S1 mode
		1	1	0	Power / Off S0 mode
		1	0	0	Power / Off Lock
			Others		Keep not used
[7: 4]	-	Keep not	used		

Power Saving Control Register - PRR

			PRR -	Power savi	ng control regis	ter		
PRR: 0x64				D	efault: 0x00			
PRR	PRTWI	PRTIM2 PR	TIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$
Initial value	0	0	0	-	0	0	0	0
Bit definition								
[0]	PRADC	Set to	1 to turn off th	e ADC cor	troller clock			
[1]	PRUSART0	Set to	1 to turn off th	e clock of	the USART0 mc	odule		
[2]	PRSPI	Set to	1 to turn off th	e SPI mod	ule clock			
[3]	PRTIM1	Set to	1 to turn off th	e Timer of	Timer / Event C	Counter 1		
-	-	Keep	not used					
[5]	PRTIM0	Set to	1 to turn off th	e Timer of	Timer / Event C	Counter 0		
[6]	PRTIM2	Set to	1 to turn off th	e Timer of	Timer / Event C	Counter 2		
[7]	PRTWI	Set to	1 to turn off th	e TWI moo	lule clock			

- 28 -

Page 35

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Power Saving Control Register - PRR1

		PRR1 - Po	wer saving o	control register	1		
PRR1: 0x65			Defa	ult: 0x00			
PRR1		PRWDT	-	-	PREFL	PRPCI	-
\mathbf{R} / \mathbf{W}		R / W	-	-	\mathbf{R} / \mathbf{W}	R / W	-
Initial value		0	-	-	0	0	-
Bit definition							
[0]	-	Keep not used					
[1]	PRPCI	Set to 1, turn off extern	nal pin chang	ge and external	interrupt modu	le operating clo	ck
[2]	PREFL	Set to 1, turn off the Fl	LASH contro	oller interface	timing clock		
[4: 3]	-	Keep not used					
[5]	PRWDT	Set to 1 to turn off the	WDT count	er clock			
[7: 6]	-	Keep not used					

MCU Control Register - MCUCR

MCUCR - MCU control register MCUCR: 0x35 (0x55) Default: 0x00

MCUCR FWKEN FPDEN PUD - - - IVSEL IVCE

\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	-	-	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial value	0	0	0	-	-	-	0	0	
Bit definition									
[0]	IVCE	Interrupt vector selection change enable bit, before changing IVSEL, you need to set this bit first After setting the IVSEL in 6 cycles.							
[1]	IVSEL	Interrupt vector selection bit, this bit is set after the interrupt vector address will be based on the IVBASE register The value is mapped to the new address. For detailed mapping addresses, refer to the IVBASE register description							
[2]	-	Keep	not used						
[3]	-	Keep	not used						
[4]	PUD	Global pull-up disabled bit							
[5]	-	Keep not used							
		Flash	Power / down er	able control					
[6]	FPDEN	0: After the system SLEEP, the FLASH remains powered on							
		1: Sys	tem SLEEP afte	r the FLASH	power				
		Fast w	ake-up mode en	able control,	only valid for l	Power / Off mo	de		
[7]	FWKEN	0: 260us filter delay							
		1: 32u	s filter delay						

- 29 -

Page 36

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

System control and reset

Overview

After the system is reset, all I/O registers are set to their initial values, starting with the reset vector carried out. On the interrupt vector address of the LGT8FX8D, you must jump to the reset process with an RJMP - relative jump instruction sequence. If the program is not used to interrupt, no interrupt source is enabled, the interrupt vector will not be used, the interrupt vector area It can be used to store the user's program code.

When the reset is active, all I / O ports immediately enter their initial state. Most I / O initialization states are input And turn off the internal pull-up resistor. I / O with analog input function is also initialized to digital I / O function.

When the reset becomes inactive, the internal timer counter of the LGT8FX8D starts to be used for widening the reset. Widen the reset The width of the signal is used to ensure that the power supply in the system and the clock and other modules enter a stable state.

Reset source

- LGT8FX8D supports a total of six reset sources:
- Power-on reset: When the operating voltage of the system is low, the reset value of the internal POR module is valid.
- External reset: When a pulse above the minimum reset width appears on the chip's RESETN pin, the external Reset is valid.
- Watchdog reset: When the watchdog module is enabled, the system will reset if the watchdog timer times out.
- Low voltage reset: LGT8FX8D has a low voltage detection module (LVD) inside, when the system power supply is lower than LVD When the reset threshold is set, the MCU will also be reset.
- Software reset: LGT8FX8D internal has a dedicated software to trigger the reset register, the user can through this The register resets the MCU at any time.
- OCD Reset: OCD Reset is issued by the debugger module for direct resetting the MCU core.

Reset system structure diagram:

Page 37

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Power on reset

The power-on reset signal is generated by an internal voltage detection circuit. When the system power supply (VCC) is lower than the detection threshold, power up The reset signal is valid. Refer to the Electrical Parameters section for the detection threshold for power-on reset.

Power-on reset circuit to ensure that the chip in the power process in a reset state, the chip after power from a known Steady state to start running. Power-on reset signal will be the chip internal expansion of the counter to ensure that after the power of the internal An analog module, such as an RC oscillator, can enter a stable operating state.

				VTH
VCC				
	20us		20us	
VPOR				

External reset

A low level is applied to the external reset pin (RSTN), and the external reset is active immediately. The width of the low level is greater than one Minimum reset pulse width requirement. External reset is asynchronous reset, even if the chip does not have clock operation, external reset is still possible Enough to reset the chip. The external reset pin of the LGT8FX8D can also be used as a general purpose I / O. Power on the chip Later, the default is as an external reset function. The user can switch through the register configuration, close the pin of the external reset function, Which can be used as a normal I / O. For details, refer to the description section of the IOCR register.

> 10us Extend

Low voltage detection (LVD) reset

The LGT8FX8D internally contains a programmable low voltage detection (LVD) circuit. LVD is also the detection of VCC voltage changes, However, unlike the power-on reset, the LVD can select the threshold for the detection voltage. The user can either through the system configuration bits or directly The VDTCR register is used to select between three different voltage thresholds. LVD voltage detection circuit with ± 10 mV \sim

 \pm 50mV hysteresis, used to filter out the VCC voltage jitter. When LVD is enabled, if the VCC voltage drops to

Set the reset threshold, LVD reset will be active immediately. When VCC is increased above the reset threshold, the internal reset is energized

- 31 -

Page 38

Watchdog reset

When the watchdog timer overflows, the watchdog system reset function is enabled and will immediately generate a cycle of the system Reset signal. The watchdog reset signal is also broadened by the internal delay counter. Watchdog controller for detailed operation, Please refer to the detailed section below.

I CK Cycle WDT TIME-OUT I 6us Extend

INTERNAL RESET

Software reset, OCD reset

Software reset is the user through the operation of the VDTCR register sixth trigger, software reset timing and watchdog reset Completely similar. The interior will reset the signal by 16us.

OCD reset is generated by the internal debugger unit, OCD reset is generally controlled by the debugger, the user software Method triggers OCD reset.

Page 39

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Pin multiplexing control

Watchdog timer

- Clock optional internal 32KHz RC or internal 32MHz RC 16-way (2MHz)
- Supports interrupt mode, reset mode and reset interrupt mode
- The timer can be up to 8 seconds

The LGT8FX8D contains an enhanced watchdog timer (WDT) module internally. The WDT timer can operate clock Is the internal 32KHz RC oscillator, it can also be internal 32MHz RC oscillator 16 frequency. WDT counter overflow After the output, you can output an interrupt or a system reset signal. In normal use, the need for software to implement one WDR - The watchdog timer reset instruction restarts the counter before overflowing. If the system does not have to execute WDR Instruction, the WDT will generate an interrupt or a system reset.

In interrupt mode, an interrupt request signal is generated after a WDT overflow. You can use this interrupt as a dormant mode Type wake-up signal can also be used as a general system timer. For example, you can use this interrupt to limit a The execution time of an operation terminates a current task in the overflow. In system reset mode, the WDT is counting A system reset signal is generated immediately after overflow. The most typical use is to prevent the system from crashing or running away. First Three modes, is to reset the interrupt mode, combined with the interrupt and reset the two functions. First the system will respond to the WDT Off function, exit WDT interrupt reset program immediately after switching to reset mode. This function can be supported at reset Before the preservation of some of the more critical parameter information.

In order to prevent the WDT from being accidentally disabled, the operation to turn off the WDT must be performed at a strictly defined timing. the following The code describes how to turn off the watchdog timer. The following example assumes that the interrupt has been disabled, so the entire operation flow The process will not be interrupted.

- 33 -

Page 40

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Assembly code WDT OFF:

```
; Turn off global interrupt
  CLI
  ; Reset watchdog timer
  WDR
  ; Clear WDRF in MCUSR
  IN r16, MCUSR
  ANDI r16, ~ (1 << WDRF)
  OUT MCUSR, r16
  ; Write logical one to WDCE and WDE
  ; Keep old Prescaler setting to prevent unintentional time-
  out
  LDS r16, WDTCSR
  ORI r16, (1 << WDCE) | (1 << WDE)
  STS WDTCSR, r16
  ; Turn off WDT
  LDI r16, (0 << WDE)
  STS WDTCSR, r16
  ; Turn on global interrupt
  SEI
  RET
C language code
void WDT OFF (void)
ł
  __disable_interrupt ();
  __watchdog_reset ();
  / * Clear WDRF in MCUSR */
  MCUSR & = \sim (1 \ll WDRF);
  / * Write logical one to WDCE and WDE */
  /* Keep old Prescaler setting to prevent unintentional time-
  out */
  WDTCSR | = (1 << WDCE) | (1 << WDE);
  / * Turn off WDT */
  WDTCSR = 0x00;
   __enable_interrupt ();
}
```

[Tips]

If the WDT is accidentally enabled, such as the program running, the chip will be reset, but the WDT is still enabled. If used The WDT is not processed in the user code, which will cause a cyclic reset. To avoid this, it is recommended that the user software initialize the program Clear the watchdog reset flag (WDRF) and the WDE control bit.

- 34 -

Page 41

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The following code describes how to change the watchdog timer timeout value. Assembly code WDT_TOV_Change: ; Turn off global interrupt CLI ; Reset watchdog timer WDR ; Start timed sequence LDS r16, WDTCSR ORI r16, (1 << WDCE) | (1 << WDE)

STS WDTCSR, r16 ; - Got for cycles to set the new value from here -; Set new time-out value = 64k cycles LDI r16, (1 << WDE) | (1 << WDP2) | (1 << WDP0) STS WDTCSR, r16 ; - Finished setting new value, used 2 cycles -; Turn on global interrupt SEI RET *C* language code void WDT_TOV_Change (void) { __disable_interrupt (); __watchdog_reset (); / * Start timed sequence */ WDTCSR | = (1 << WDCE) | (1 << WDE); / * Set new time-out value = 64K cycles */ WDTCSR | = (1 << WDE) | (1 << WDP2) | (1 << WDP0);

}

[Instructions for use]

__enable_interrupt ();

It is recommended to reset the watchdog timer before changing the WDP configuration bits. Because it is possible to change the WDP bit to a relatively small time-out period Can cause the watchdog to reset on time.

LogicGreen Technologies Co., LTD

- 35 -

Page 42

LGT8FX8D Series - Programming Manual 1.0.5

Register definition

Low Voltage Detection (LVD) Control Register - VDTCR

			VDTCR - LVD con	trol register					
VDTCR: 0x62			Default: 0x00 or loaded from the system configuration information						
GPIOR2	CE SWR		-	VDTS1	VDTS0	LVREN	VDTEN		
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	W	-	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W		
Initial value			0x00 or loaded from the system configuration information						
Bit definition									
[0]	VDTEN		Low voltage detection module enable control, 1 enabled, 0 disabled						
[1]	LVREN Low-voltage reset function enable control, 1 enabled, 0 disabled								
[3: 2]			Low voltage detection threshold configuration bit						
	VDTC		VDTS = 00: 1.8V						
	VDIS		VDTS = 01: 2.7V						
			VDTS = 10: 4.3V						
[5:4]	-		Keep not used						
[6]	SWR		Soft reset enable bit, this bit is cleared to generate a software reset						
			VDTCR value change enable bit						
[7]	CE		Before changing the value of th	e VDTCR register,	the user must	first write this	bit to 1, after which		
Change the value of other bits of VDTCR in 4 clock cycles. After four cycles CE is automatically cleared, The update operation to the VDTCR register is invalid.

IO Special	Power Co	ontrol Re	gister - IOCR						
			IOCR - IO	Special Func	tion Control R	egister			
IOCR: 0xF0				Default	0x00				
IOCR	CE	STOSC1	STOSC0 DACEN1	DACEN0		XIEN	RVIO_EN	EXIO_EN	
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	R / W	
Initial value			0x0	0 or loaded f	rom the system	configuratio	on information		
Bit definition									
0			PC6 pin defaults to	the reset fun	ction, setting th	nis bit to 1 w	ill disable the ext	ernal reset function, reset	
0	0 EXIO_EN	Function disabled, PC6 can be used as a normal I / O							
1	PVIO I	-N	VREF pin defaults to analog input function, set this bit to 1, will turn off the analog input function,						
1	I RVIO_EN		This pin can be used as PE6						
2	XIEN	1	External clock inpu	ut enable cont	rol				
3	DACE	N0	DAO output enable	e					
4	DACE	N1	DAO1 output enab	le					
5	STOS	20	Low speed crystal	start control					
6	STOS	21	High speed crystal	start control					
			IOCR value change	es enable bit					
-	CE.		Before changing th	e value of the	e IOCR register	, the user m	ust first write this	bit to 1, followed by 4	
/	CE		During the clock c	ycle, change t	he value of the	IOCR other	bits. After four c	ycles CE is automatically cle	eared, yes
			IOCR register upda	ate operation	is invalid.				

- 36 -

Page 43

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

	_		
MCU	Status	Register	- MCUSR

MCUSR - IO special function control register									
MCUSR: 0x	MCUSR: 0x34 (0x54) Default: 0x00								
MCUSR SV	VDD	PDRF	-	OCDRF	WDRF	BORF	EXTRF	PORF	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	
Initial value					0x00				
Bit definition	n								
[0]	PORF		Power on reset	flag, write 0 cle	ar				
[1]	EXTRF		External reset f	lag, power-on re	eset is automa	tically cleared, o	or write 0 cleared		
[2]	BORF		Low voltage de	tection reset, po	wer-on reset a	automatically cl	eared, or write 0 c	lear	
[3]	WDRF		Watchdog reset	flag, power-on	reset automat	ically cleared, o	or write 0 clear		
[4]	OCDRF		OCD debugger	reset flag, powe	er-on reset is a	utomatically clo	eared, or write 0 c	leared	
[5]	PDRF		Wake up from	he Power / off r	node. Refer to	the Power Mar	nagement section i	for details.	
[6]	-		Keep not used						
			SWD interface	disable bit. Wri	ting a 1 closes	the SWD inter	face.		
			After the SWD	interface is shu	t down, debug	ging and ISP of	perations can not b	e performed. If the	user program is closed
			SWD interface	you can switch	through the p	rocess of power	r down the way to	prohibit the internal	program shipped
[7]	SWDD		Line, and then	debug and ISP o	peration. SW	D interface is cl	osed, SWD occup	ied two I / O	
			The interface c	an be used as a g	general purpos	se I / O.			
			To avoid misus	e of SWDD, the	user needs to	update the SW	DD bit after the fi	rst four	
			Write SWDD in	n one cycle to ta	ke effect.				

[Tips]:

In order to use the reset flag information more accurately and effectively, it is advisable to read the reset flag as soon as possible before the program is initialized

Clear it.

Watchdog Control Status Register - WDTCSR

WDTCSR - WDT control and status register								
Address: 0x60 Default: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	WDIF	WDIE	WDP3 WI	DTOE	WDE	WDP2	WDP1	WDP0
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$
Initial	0	0	0	0	0	0	0	0

Bit	Name	description
[7] WDII		WDT interrupt flag.
	WDIE	The WDIF bit is set when the WDT is operating in interrupt mode and overflow occurs. When the WDT interrupt is enabled
	WDIF	WDIE is set to "1" and the global interrupt is set, the WDT interrupt is generated. This bit is cleared when a WDT interrupt is executed
		WDIF bit, which can also be cleared by writing "1" to the WDIF bit.

- 37 -

Page 44

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

		WDT interrupt enable cont	trol bit.					
		WDT interrupt is enabled when the WDIE bit is set to "1" and the global interrupt is set.						
		When the WDIE bit is set	When the WDIE bit is set to "0", the WDT interrupt is disabled.					
		The WDIE bit together with	th the WDE bit deterr	nines the watchdog's operating	mode, as shown in the following table.			
[6]	WDIE							
		WDE	WDIE	mode	After overflow action			
		0	0	stop	no			
		0	1	Interrupt mode	Interrupted			
		1	0	Reset mode	Reset			
		1	1	Interrupt and reset mode	Reset after reset			
		WDT prescaler factor selection	ction control 3rd bit.					
[5]	WDP3	WDP [3] and WDP [2: 0]	make up the WDT pr	escaler factor selection bit WD	P [3: 0] to set the WDT			
		Of the overflow period.						
		WDT off enable control bi	t.					
[4]	WDTOE	When the WDE bit is clean	red, the WDTOE bit i	s set, otherwise the WDT will	not be turned off. When WDTOE			
		Bit is set, the hardware cle	ars the WDTOE bit a	fter 4 clock cycles.				
[3]	WDE	WDT enable control bit.						
		WDT is enabled when the	WDE bit is set to "1"	. When the WDE bit is set to "	0", the WDT is			
		Forbidden.						
		WDE can only be cleared	if the WDTOE bit is	set. To turn off the WDT that is	already enabled,			
		Must follow the following	timing:					
		1. Set the WDTOE and W	DE bits simultaneous	ly, even if WDE has been set, t	he start of the shutdown operation			
		You must also write	"1" to the WDE bit b	efore.				
		2. Write "0" to the WDE b	it for the next four clo	ock cycles. This will turn off th	e WDT.			
		When the WDE bit is set to	o "1" and the WDT o	verflow is reset, the WDT rese	system flag is set after resetting the system	flag WDRF		
		(Located in the MCUSR re	egister). The WDE bi	t is set when the WDRF bit is s	et. therefore			
		To clear the WDE bit, the	WDRF bit must be cl	eared first.				
[2:0]	WDP	WDT prescaler factor selection	ction control.					
		Used to set the WDT over	flow period. It is reco	mmended to change the value	of WDP when the WDT is not counting			
		Changes in the value of W	DP during the proces	s will produce unpredictable W	DT overflow.			
Watchde	og Prescaler S	Selection List:						
WDP3 V	WDP2 WDP	I WDP0	Watchdog	timer 32KHz	2MHz			

Number of overflow cyclesclock

64ms

clock

1ms

0 0 0 0 2K cycles

0	0	0	1	4K cycles	128ms	2ms
0	0	1	0	8K cycles	256ms	4ms
0	0	1	1	16K cycles	512ms	8ms
0	1	0	0	32K cycles	1s	16ms
0	1	0	1	64K cycles	2s	32ms
0	1	1	0	128K cycles	4s	64ms
0	1	1	1	256K cycles	8s	128ms
1	0	0	0	512K cycles	16s	256ms
				- 38 -		

Page 45

LGT8FX8D Series - Programming Manual 1.0.5

1	0	0	1	1024K cycles
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

LogicGreen Technologies Co., LTD

512ms

32s

Keep not used

- 39 -

Page 46

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Interrupt and interrupt vector

- 28 interrupt sources
- Programmable vector start address

LGT8F48D / 88D / 168D / 328D interrupt resources are basically the same, the main difference is: LGT8F48D / 88D The interrupt vector is 1 instruction word (16 bits), while the LGT8F168D / 328D interrupt vector is 2 instruction words.

LGT8F48D / 88D interrupt vector list

LGT8F48D / 88D interrupt vector list:

Numbering	Vector address	Interrupt source signal	Interrupt source description
1	00000	DECET	External reset, power-on reset, watchdog reset,
1	0x0000	KESE I	SWD debug reset, low voltage reset
2	0x0001	INT0	External interrupt request 0
3	0x0002	INT1	External interrupt request
4	0x0003	PCI0	Pin level interrupt 0
5	0x0004	PCI1	Pin level interrupt 1
6	0x0005	PCI2	Pin level interrupt 2
7	0x0006	WDT	Watchdog overflow interrupt
8	0x0007	TC2 COMPA	Timer 2 compare match A interrupt
9	0x0008	TC2 COMPB	Timer 2 compare match B interrupt
10	0x0009	TC2 OVF	Timer 2 overflow interrupt
11	0x000A	TC1 CAPT	Timer 1 input capture interrupt
12	0x000B	TC1 COMPA	Timer 1 compare match A interrupt
13	0x000C	TC1 COMPB	Timer 1 compare match B interrupt
14	0x000D	TC1 OVF	Timer 1 overflow interrupt
15	0x000E	TC0 COMPA	Timer 0 compare match A interrupt
16	0x000F	TC0 COMPB	Timer 0 compare match B interrupt
17	0x0010	TC0 OVF	Timer 0 overflow interrupt
18	0x0011	SPI STC	SPI serial transmission ends interrupt
19	0x0012	USART RXC	The USART receives an end interrupt
20	0x0013	USART UDRE	The USART data register is empty
twenty one	0x0014	USART TXC	The USART sends an end interrupt
twenty two	0x0015	ADC	ADC conversion end interrupt
twenty three	0x0016	EE_RDY	EEPROM ready to interrupt
twenty four	0x0017	ANA_COMP	Analog Comparator 0 interrupt
25	0x0018	TWI	Two-wire serial interface is interrupted
26	0x0019	ANA_COMP1	Analog Comparator 1 is interrupted
27	0x001A	-	Keep it
28	0x001B	PCI3	Pin level interrupt 3
29	0x001C	OPA0_COMP	OPA0 built-in timer compare match interrupt
30	0x001D	OPA1_COMP	OPA1 built-in timer compare match interrupt

- 40 -

LGT8F168D / 328D interrupt vector list

LGT8F168D / 328D Interrupt Vector List:

Numbering	Vector address	Interrupt source signal	Interrupt source description
1	00000	DECET	External reset, power-on reset, watchdog reset,
1	0x0000	KESE I	SWD debug reset, low voltage reset
2	0x0002	INT0	External interrupt request 0
3	0x0004	INT1	External interrupt request
4	0x0006	PCI0	Pin level interrupt 0
5	0x0008	PCI1	Pin level interrupt 1
6	0x000A	PCI2	Pin level interrupt 2
7	0x000C	WDT	Watchdog overflow interrupt
8	0x000E	TC2 COMPA	Timer 2 compare match A interrupt
9	0x0010	TC2 COMPB	Timer 2 compare match B interrupt
10	0x0012	TC2 OVF	Timer 2 overflow interrupt
11	0x0014	TC1 CAPT	Timer 1 input capture interrupt
12	0x0016	TC1 COMPA	Timer 1 compare match A interrupt
13	0x0018	TC1 COMPB	Timer 1 compare match B interrupt
14	0x001A	TC1 OVF	Timer 1 overflow interrupt
15	0x001C	TC0 COMPA	Timer 0 compare match A interrupt
16	0x001E	TC0 COMPB	Timer 0 compare match B interrupt
17	0x0020	TC0 OVF	Timer 0 overflow interrupt
18	0x0022	SPI STC	SPI serial transmission ends interrupt
19	0x0024	USART RXC	The USART receives an end interrupt
20	0x0026	USART UDRE	The USART data register is empty
twenty one	0x0028	USART TXC	The USART sends an end interrupt
twenty two	0x002A	ADC	ADC conversion end interrupt
twenty three	0x002C	EE_RDY	EEPROM ready to interrupt
twenty four	0x002E	ANA_COMP	Analog comparator interrupt
25	0x0030	TWI	Two-wire serial interface is interrupted
26	0x0032	ANA_COMP1	Analog Comparator 1 is interrupted
27	0x0034	-	Keep it
28	0x0036	PCI3	Pin level interrupt 3
29	0x0038	OPA0_COMP	Op amp 0 Built-in timer match interrupt
30	0x003A	OPA1_COMP	Op amp 1 built-in timer match interrupt

The reset vector for LGT8FX8D is executed from address 0x0000. In addition to the reset vector, other vector addresses are available The IVSEL and IVBASE registers in the MCUCR register are redirected to the 512-byte aligned start address.

- 41 -

Page 48

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Interrupt vector processing

The following code only LGT8F48D / 88D, for example, to explain the reset and interrupt vector programming, for reference only:

Assembly code example - LGT8F48D / 88D

address Code 0x000 RJMP RESET Description Reset vector

https://translate.googleusercontent.com/translate_f

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

0x001	RJMP EXT_INT0	External interrupt 0
0x002	RJMP EXT_INT1	External interrupt 1
0x003	RJMP PCINT0	Pin level change interrupt 0
0x004	RJMP PCINT1	Pin level change interrupt 1
0x005	RJMP PCINT2	Pin level change interrupt 2
0x006	RJMP WDT	The watchdog timer is interrupted
0x007	RJMP TIM2_COMPA	Timer 2 compare match group A interrupt
0x008	RJMP TIM2_COMPB	Timer 2 compare match group B interrupt
0x009	RJMP TIM2_OVF	Timer 2 overflow interrupt
0x00A	RJMP TIM1_CAPT	Timer 1 traps the interrupt
0x00B	RJMP TIM1_COMPA	Timer 1 compare match A group interrupt
0x00C	RJMP TIM1_COMPB	Timer 1 compare match group B interrupt
0x00D	RJMP TIM1_OVFR	Timer 1 overflow interrupt
0x00E	RJMP TIM0_COMPA	Timer 0 compare match group A interrupt
0x00F	RJMP TIM0_COMPB	Timer 0 compare match group B interrupt
0x010	RJMP TIM0_OVF	Timer 0 overflow interrupt
0x011	RJMP SPI_STC	SPI transfer complete interrupt
0x012	RJMP USART_RXC	USART reception complete interrupt
0x013	RJMP USART_UDRE	The USART data register is empty
0x014	RJMP USART_TXC	The USART sends an interrupt
0x015	RJMP ADC	ADC conversion complete interrupt
0x016	RJMP EE_RDY	The EEPROM controller is ready to interrupt
0x017	RJMP ANA_COMP	Comparator interrupt
0x018	RJMP TWI	TWI controller interrupt
0x019	NOP	Keep address
0x01A	NOP	Keep address
0x01B	RJMP PCI3	Pin level change interrupt 3
,		
0x01C (the RESET:)	LDI r16, high (RAMEND)	The main program starts
0x01D	OUT SPH, r16	Set the stack pointer to the top address of the RAM
0x01E	LDI r16, low (RAMEND)	
0x01F	OUT SPL, r16	
0x020	SEI	Enable global interrupts
0x021		

- 42 -

Page 49

LGT8FX8D Series - Programming Manual 1.0.5

Register definition

MCU Control Register - MCUCR

	MCUCR - MCU control register									
MCUCR: 0x35	(0x55)			Default: 0	x00					
MCUCR	-	-	PUD	-	-	-	IVSEL	IVCE		
\mathbf{R} / \mathbf{W}	-	-	\mathbf{R} / \mathbf{W}	-	-	-	\mathbf{R} / \mathbf{W}	R / W		
Initial value	-	-	0	-	-	-	0	0		
Bit definition										
[0]	BLCE.	Interrupt vector selection change enable bit, before changing IVSEL, you need to set this bit first								
[0]	IVCE	After setting the IVSEL in 6 cycles.								
[1]	IVEEL	Interrupt vector selection bit, this bit is set after the interrupt vector address will be based on the IVBASE register								
[1]	IVSEL	The value is mapped to the new address. For detailed mapping addresses, refer to the IVBASE register description								
[2]	-	Keep not used								
[3]	-	Keep not used								

LogicGreen Technologies Co., LTD

[4]	PUD	Global pull-up disabled bit
[5]	-	Keep not used
[6]	FPDEN	Flash Power / down enable control
[7]	FWKPEN	Fast wake-up mode enable control

Interrupt Vector Base Address Register - IVBASE

		IVBASE - interrupt vector base address register
IVBASE: 0x75		Default: 0x00
IVBASE		IVBASE [/: 0]
\mathbf{R} / \mathbf{W}		R / W
Initial value		0x00
Bit definition		
		If IVSEL is 1, the interrupt vector (except the reset vector) will be based on IVBASE at 512
[7:0]	IVBASE	Byte on the page to remap.
		The mapped interrupt vector base address is: (IVBASE << 8) + the corresponding vector address in Table 1

- 43 -

Page 50

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

External interrupt

- 2 external interrupt sources
- Configurable level or edge trigger interrupt
- Can be used as a wake-up source in sleep mode

Overview

The external interrupt is triggered by the INT0 and INT1 pins. As long as the external interrupt is enabled, even if the two pins are configured for output Can also trigger an interrupt. This can be used to generate software interrupts. The external interrupt can be triggered by a rising edge, a falling edge, or a low level, It is configured by external interrupt control register EICRA. When an external interrupt is enabled and configured as a level trigger (only INT0 and INT1 pin), the interrupt will always be generated as long as the pin level is low. INT0 and INT1 pins are rising or falling The interrupt requires an IO clock to operate normally, while the INT0 and INT1 pin low-level interrupt are detected asynchronously. In addition to the idle mode, the IO clocks in other sleep modes are stopped. Therefore, these two external interrupts can be used as Wake-up source in other sleep modes except for Idle mode.

If the level-triggered interrupt is used as a wake-up source in power-saving mode, the changed level must be held for a certain amount of time to wake up MCU to reduce the MCU's sensitivity to noise. The required level must be kept long enough for the MCU to end the call Wake up the process, and then trigger the level interrupt.

Register definition

Register list

register

address

Defaults

description

External interrupt control register A

EICRA	0x69	0x00	External interrupt mask register
EIMSK	0x3D	0x00	
EIFR	0x3C	0x00	External interrupt flag register

External Interrupt Control Register A-EICRA

	EICRA - External Interrupt Control Register A								
Address: 0x69)		De	Default: 0x00					
Bit	7	6	5	4	3	2	1	0	
Name	-	-	-	-	ISC11	ISC10	ISC01	ISC00	
\mathbf{R} / \mathbf{W}	-	-	-	-	\mathbf{R} / \mathbf{W}	R / W	R / W	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	

Bit	Name	description
7:4	-	Keep it.
3	ISC11	INT1 pin interrupt trigger mode control bit high.
2	ISC10	INT1 pin interrupt trigger mode control bit low.
		When the global interrupt is set and the corresponding interrupt mask control bit of the GICR register is set, the external interrupt 1

Triggered by the INT1 pin. The trigger mode of the interrupt is described in the table. Before the edge detection MCU first mining

- 44 -

Page 51

LGT8FX8D Serie	s - Program	ming Manual 1.0.5 Logi	cGreen Technologies Co., LTD
		The level on the INT1 pin. If you use the edge trigger mode or level ch	ange trigger mode, then
		A pulse with a duration greater than one system clock cycle will trigge	r an interrupt, and a short pulse can not guarantee
		Interrupted. If the low-level trigger mode is selected, then the low level	I must be maintained until the current instruction is completed
		Will trigger an interrupt.	
1	ISC01	INT0 pin interrupt trigger mode control bit high.	
0	ISC00	INT0 pin interrupt trigger mode control bit low.	
		When the global interrupt is set and the corresponding interrupt mask of	control bit of the GICR register is set, the external interrupt 0
		Triggered by the INT0 pin. The trigger mode of the interrupt is describ	ed in the table. Before the edge detection MCU first mining
		The level on the INT0 pin. If you use the edge trigger mode or level ch	ange trigger mode, then
		A pulse with a duration greater than one system clock cycle will trigge	r an interrupt, and a short pulse can not guarantee
		Interrupted. If the low-level trigger mode is selected, then the low level	I must be maintained until the current instruction is completed
		Will trigger an interrupt.	

External interrupt 1 trigger mode see table below.

	External interrupt 1 trigger mode control
ISC1 [1:0]	description
0	External pin INT1 low trigger
1	Trigger on the rising or falling edge of external pin INT1
2	The falling edge of external pin INT1 is triggered
3	The rising edge of the external pin INT1 is triggered

External interrupt 0 trigger mode see table below.

	External interrupt 0 Trigger mode control
ISC0 [1: 0]	description
0	External pin INT0 low level trigger
1	The rising edge of the external pin INT0 or the falling edge triggers
2	The falling edge of the external pin INT0 is triggered
3	The rising edge of the external pin INT0 is triggered

External Interrupt Mask Register - EIMSK

Address: 0x3D			Default: 0x00					0		
	Bit	7	6	5	4	3	2	1	0	
	Name	-	-	-	-	-	-	INT1	INT0	
	\mathbf{R} / \mathbf{W}	-	-	-	-	-	-	\mathbf{R} / \mathbf{W}	R / W	
	Initial	0	0	0	0	0	0	0	0	
	Bit	Name	description							
	7: 2	-	Keep it.							
	1	INT1	External pin 1	nterrupt ena	ble control bit.					
			When the INT	When the INT1 bit is set to "1" and the global interrupt is set, the external pin 1 interrupt is enabled and the wal						l the wake

EIMSK - External interrupt mask register

- 45 -

Page 52

LGT8FX8D Series - Programming Manual 1.0.5

0

LogicGreen Technologies Co., LTD

Function is enabled. Even if the INT1 pin is configured as an output, as long as the pin level is changed accordingly The interrupt will be generated. When the INT1 bit is set to "0", the external pin 1 interrupt is disabled and the wake-up function is disabled. INT0 External pin 0 interrupt enable control bit. When the INT0 bit is set to "1" and the global interrupt is set, the external pin 0 interrupt is enabled and the wake Function is enabled. Even if the INT0 pin is configured as an output, as long as the pin level has changed accordingly The interrupt will be generated.

When the INT0 bit is set to "0", the external pin 0 interrupt is disabled and the wake-up function is disabled.

External Interrupt Flag Register - EIFR

EIFR - External interrupt flag register									
Address: 0x3C		Default: 0x00							
Bit	7	6	5	4	3	2	1	0	
Name	-	-	-	-	-	-	INTF1	INTF0	
R / W	-	-	-	-	-	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	
Initial	0	0	0	0	0	0	0	0	

Bit	Name	description
7:2	-	Keep it.
1	INTF1	External pin 1 interrupt flag bit.
		INTF1 is set when edge trigger external pin 1 is interrupted. When the low level triggers the external pin 1
		When the interrupt is set, the INTF1 bit is not set. If the external pin 1 interrupt is enabled, the INT1EN bit is set to "1"
		When the global interrupt flag is set, an external pin 1 interrupt is generated. Execute this interrupt service routine when INTF1
		This bit can also be cleared by clearing it automatically or by writing "1" to the INTF1 bit.
0	INTF0	External pin 0 interrupt flag.
		INTF0 is set when edge-triggered external pin 0 is interrupted. When low, the external pin 0 is triggered
		When the interrupt is set, the INTF0 bit is not set. If the external pin 0 interrupt is enabled, the INT0EN bit is set to "1"
		When the global interrupt flag is set, an external pin 0 interrupt is generated. Execute this interrupt service routine when INTF0
		This bit can also be cleared by clearing it automatically or by writing "1" to the INTF0 bit.

- 46 -

Page 53

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Input / output subsystem

Overview

All MCUs based on the LGT8 core family have I / O port read-change-write functions. This means that one by one The status of the port can be changed individually using the SBI and CBI instructions without affecting any other I / O. Again, change The direction of a port or control its pull-up resistor can also be the case.

Most of the I/O of the LGT8FX8D has symmetrical drive characteristics that can drive and absorb large currents. I/O has two Level drive capability, the user can control the drive capability of each group of I/O. I/O drive capability can directly drive some LEDs.

LGT8FX8D most of the I / O can drive up to 30mA of current, can be directly used to drive segment code LED.

All I / O VCC and GND directly have independent ESD protection diodes, designed to withstand at least up to 5000V ESD pulse.

LGT8FX8D series most of the I/O internal has a default uncontrollable weak pull (about 80KQ) , when the I/O work For input I/O, this default weak pull-up is forced on. The weak pull-up of the input mode I/O favors the low power mode Control, external floating input mode I/O, if no pull-up/pull-down processing, will bring additional leakage.

When the *I*/O work in the output mode, or analog function, the default weak pull-up automatically shut down.

Not all *I/Os* has a default weak pull-down, do not have the default weak pull-up *I/O* include:

PD2, PD3, PD5, PB1, PB2, PE0, PE2

If these I/O work in the input I/O mode, before entering the low power mode, the software needs to write through the corresponding **PORT**. The register is I to open the internal controllable strong pull-up.

PE0/2 default to SWD interface needs to be disabled PE0/2 of the SWD function after, before opening the internal strong pullup.

All of the following registers in this chapter are described in a uniform way. The lowercase "x" indicates the letter number of the port, the lower case "n" Indicates the bit number in the port. However, when using the port register in the program, you must use the exact register name. such as PORTB3, which represents the third bit of PORTB, where it is unified with PORTxn said. A detailed definition of I / O related registers, Please refer to the Register Description section.

Each port is assigned three I / O register spaces, which are: Port Data Output Register (PORTx), Port Direction Register (DDRx), port data input register (PINx). The port data input register is a read-only register. Data output The register and port direction registers are readable or rewritten. The PUD bit in the MCUCR register is used to control all I / O Pull-up resistor, when the PUD bit is 1, will disable the I / O pull-up resistor. Page 54

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Most I / O in addition to the general input / output function, will be reused for other peripheral functions. Specific reusable work Please refer to the chapter on port function reuse.

It should be noted that enabling multiple port reuse does not affect these ports as digital I / O. and Some of the alternate functions may also need to control the input / output direction of the port via the I / O register. The specific settings will be in each A description of the documentation for the multiplex module.

Universal input / output port

As a general purpose I / O, the port is a bidirectional drive I / O port with an internal programmable pull-up.

The following figure shows the equivalent circuit diagram of the general purpose I / O port:

PUD: PULLUP	DISABLE	WDx:	WRITE DDRx
SLEEP: SLEEP	CONTROL	RDx:	READ DDRx
IO_CLK:	1/O CLOCK	WRx:	WRITE PORTX
		RRx:	READ PORTX REGISTER
		RPx:	READ PORTX PIN
		WPx:	WRITE PINX REGISTER

Port usage configuration

Each port is controlled by three register bits: DDxn, PORTxn and PINxn. Where DDxn is available for use via DDRx Register access, PORTxn can be accessed via the PORTx register, and PINxn can be accessed via the PINx register.

The DDRxn register bits are used to set the input / output direction of the port. If DDxn is set to 1, the Pxn port is assigned Set to an output port. If DDxn is set to 0, Pxn is configured as an input port.

IN r17, PIN

- 48 -

Page 55

LGT8FX8D Series - Programming Manual 1.0.5

CPU CLK

LogicGreen Technologies Co., LTD

https://translate.googleusercontent.com/translate_f

If the PORTxn bit is written 1 and the port is configured as an input port, the pull-up resistor for this port is asserted. If you want to disable the pull-up resistor on the port, PORTxn must be either 0 or configured as an output port.

The reset status of the port is the input state and the pull-up resistor is invalid.

PORTxn is set to 1, and the port is configured as an output port and the external port will be driven high. Such as If PORTxn is set to 0, the port will be driven low.

Input / output switch

When the I / O state is between the tri-state ([DDxn, PORTxn]) = 0b00) and the output high ([DDxn, PORTxn] = 0b11)

In case of time, there will be a port pull-up or output to a low intermediate state. In general, the pull-up resistor can be accepted,

Because in a high resistance environment, the drive between the high and the difference between the pull is not important. If this is not the case, you can pass The PUD bit in the MCUCR register is turned off so the pull-up function of the port.

Likewise, the same problem arises when switching between the pull-up enable input and the output low. The user must make

([DDxn, PORTxn] = 0b00) or the output high ([DDxn, PORTxn] = 0b11) as the intermediate state.

Port driver configuration table:

DDxn P	ORTxn PUD		Port state	pull up	Function Description
0	0	х	enter	Forbidden	Tri-state
0	1	0	enter	Enable	If the external pull-down, the pin will fan out the current
0	1	1	enter	Forbidden	Tri-state
1	0	х	Output	Forbidden	Output low (fan-in)
1	1	х	Output	Forbidden	Output high (fanout)

Read port value

Regardless of how the port direction bit DDxn is set, the current status of the port can be read via the PINxn register bit. To avoid directly reading the metastable state generated by the port, the PINxn register bit is the result of the port passing through a synchronizer. Synchronizer Is composed of a latch and a register, so there is a small delay between the value of PINxn and the current port. This delay is due to the presence of the synchronizer, with a delay of up to one half of the system cycle.

The delay time is Tpd, max and Tpd, min in the following figure:

We assume that the system cycle from the system clock on the first falling edge of the latch when the clock is low when the data, When the clock is high, the data passes through the latch, as shown in the shaded area above. When the clock is low, the port data is locked And the rising edge of the next clock is registered into the PINxn register. In the figure above, Tpd, max and Tpd, min

- 49 -

Page 56

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The maximum and minimum delays for port data are divided into 1.5 cycles and 0.5 cycles.

If you want to read the port value set by the software, you need to insert an empty operation instruction in the I / O write and read bytes support (NOP). The timing is shown below:

CPU_CLK			
Execute Instructions	OUT PORTs, 116	NOP	IN r17, PINx
Sync Latch			

0xFF

The following code shows how to set port 0 to pin 0/1 to be high, 2/3 is low, define pins 4 to 7 for input and The pull-up resistors of pins 6, 7 are enabled. And then the value of the pin back to read the general working register, according to the previous description, A NOP instruction is inserted directly on the pin's output and input. Assembly code ; Define Pull-ups and set up high ; Define directions for port pins LDI r16, (1 << PB7) | (1 << PB6) | (1 << PB1) | 1 << PB0) LDI r17, (1 << DDB3) | (1 << DDB2) | (1 << DDB1) | (1 << DDB0) OUT PORTB, r16 OUT DDRB, r17 ; Insert nop for synchronization NOP ; Read port pins IN r16, PINB C language code unsigned char / * Define pull-ups and set up high * / / * Define directions for port pins * / $PORTB = (1 \le PB7) | (1 \le PB6) | (1 \le PB1) | (1 \le PB0);$ $DDRB = (1 \le DDB3) | (1 \le DDB2) | (1 \le DDB1) | (1 \le DDB0);$ / * Insert nop for synchronization * / __no_operation (); / * Read port pins */

0.0

I = PINB;

- 50 -

Page 57

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Input enable and sleep control

From the I / O equivalent circuit diagram we can see that the digital input can be clamped to the ground under the control of the SLEEP signal Level. The SLEEP signal is controlled by the MCU's sleep controller and various sleep modes. This ensures that you are going to sleep , The system will not be due to the port input floating caused by leakage.

The SLEEP control of the port is replaced by an external interrupt function. If the external interrupt request is invalid, SLEEP control remains It can work. SLEEP control function will be replaced by some other second function, please refer to the following on the port Two functions introduced.

Idle port processing

If some ports are not being used, it is recommended to drive them to a fixed level. In any case, floating The pin will bring more power consumption, and will lead to the system under strong interference becomes unstable.

The easiest way to give a fixed level to a port is to turn on the pull-up resistor on the port. It should be noted that the pull-up resistor It is forbidden during power-on reset. Pull-up resistor will also bring the excess leakage. It is therefore recommended to use an external one Pull or pull-down resistor connection. It is not advisable to connect the port directly to the power supply or ground because if these pins are configured as Output, it may lead to a very large current through the port, the chip caused a devastating impact.

Port reuse function

Most of the ports have a multiplexing function, the following equivalent circuit describes the port multiplexing function of the port control. These complex The function does not necessarily exist with the port pin.

PUOVxn: Pxn PULL-UP OVERRIDE VALUE

Pxn

- 51 -

Page 58

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

DDOExn: Pxn DATA DIRECTION OVERRRIDE ENABLE	RDx:	READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE	RRx:	READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE	WRx:	WRITE PORTX
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE	RPx:	READ PORTX PIN
DIEOExn: Pxn INPUT-ENABLE OVERRIDE ENABLE	WPx:	WRITE PINx
DIEOVxn: Pxn INPUT-ENABLE OVERRIDE VALUE	IO_CLK: I /	O CLOCK
SLEEP: SLEEP CONTROL	DIxn:	INPUT PIN n ON PORTx
PTOExn: Pxn PORT TOGGLE OVERRIDE ENABLE	AIOxn:	ANALOG I / O PIN n ON PORTx

Alternate function control signal General description:

Signal full name	Functional description
	This bit is 1, pull-up enable is controlled by PVOV; if this bit is
PUOE pull-up multiplex enable	0, pull-up enable by DDxn, PORTxn and PUD common control
	system
	If PUOE is 1, this bit will enable the pull-up of the pin
PUOV pull-up multiplexing value	Resistance, otherwise it will disable the pin pull-up resistor
DDOE nort direction multiplaying angle	Bit is 1, pin output enabled by DDOE control, otherwise by
DDOE port direction multiplexing enable	DDxn control
DDOU and limiting with the set	If DDOE is 1 and bit 1 is 1, the output of the pin is enabled
DDOV port direction multiplexing value	Function, otherwise the output of the pin is turned off
NVOF and data as high increased	If the bit is 1, and the pin output is enabled, the pin is output
PVOE port data multiplexing enable	The value will be controlled by PVOV, otherwise it will be controlled by PORTxn
PVOV port data reuse value	Refer to the PVOE function description
PTOE port rollover is enabled	The bit is 1, and the PORTxn bit will flip
	If the bit is 1, the port digital input enable will be controlled by DIEOV
DIEOE digital input enable multiplexing enable	System; otherwise there will be MCU running state control
	If DIEOE is 1, the port's digital input function will be times
DIEOV digital input enables multiplexed values	Bit control, independent of the MCU operating status

DI	Digital input	This is the digital input signal input to the alternate function module. From the I / O and other circuit can be seen in the next, this value in the dense After the special trigger, but before the I / O input synchronizer. This one Signal is connected to the peripheral module, the peripheral module will be required
		To be synchronized
		Analog input / output signal, this signal directly with I / O PAD
AIO	Analog input	Connected, can be used as a simulation of the two-way signal. This signal is straight
		Connected to the internal ADC, comparator and other analog modules port phase
		connection

LogicGreen Technologies Co., LTD

The following section will briefly describe the alternate function of each pin and the associated control signal.

- 52 -

Page 59

LGT8FX8D Series - Programming Manual 1.0.5

Port B reuse function

Pin multiplexing function description

DD7	XTAL2 / TOSC2 (external main crystal pin 2)
PB/	PCINT7 (pin change interrupt 7)
DD4	XTAL1 / TOSC1 (external main crystal pin 1)
FB0	PCINT6 (pin change interrupt 6)
DD.5	SCK (SPI bus master clock input)
РВЭ	PCINT5 (pin change interrupt 5)
DD4	MISO (SPI bus master input / slave output)
rd4	PCINT4 (pin change interrupt 4)
	MOSI (SPI bus master output / slave input)
PB3	OC2A (Timer / Event Counter 2 Compare Match Output A)
	PCINT3 (pin change interrupt 3)
	SSN (SPI bus slave device select input)
PB2	OC1B (Timer / Event Counter 1 Compare Match Output B)
	PCINT2 (pin change interrupt 2)
DD 1	OC1A (Timer / Event Counter 1 Compare Match Output A)
FDI	PCINT1 (pin change interrupt 1)
	ICP1 (Timer / Event Counter 1 capture input)
PB0	CLKO (system clock output)
	PCINT0 (pin change interrupt 0)

XTAL2 / TOSC2 / PCINT7 - Port B pin 7

XTAL2 : External crystal pin 2. When used as a crystal clock signal, this pin will not be used as an 1 / O.
TOSC2 : Timer external crystal pin 2. When the internal RC is configured as the main working clock of the chip, and the difference is enabled Step timer function (ASSR register configuration), this pin will be used as a timer external crystal pin. When ASSR is registered
AS2 is set to 1 and EXCLK is set to 0, the Timer / Event Counter 2 is enabled with an external crystal
Clock function, PB7 will be disconnected from the internal I / O port and become the reverse output pin of the internal oscillator amplifier. This mold The external crystal is connected to the pin.
PCINT7 : Pin Change Interrupt 7. PB7 is an external interrupt source.
If PB7 is used for crystal pins, the values of DDB7, PORTB7 and PINB7 will not make any sense.

XTAL1 / TOSC1 / PCINT6 - Port B pin 6

XTAL1 : External crystal pin 1.

TOSC1 : Timer external crystal pin 1. When the internal RC is configured as the main working clock of the chip, and the difference is enabled Step timer function (ASSR register configuration), this pin will be used as a timer external crystal pin. When ASSR is registered

AS2 is set to 1 and EXCLK is set to 0, the Timer / Event Counter 2 is enabled with an external crystal

Clock function, PB6 will be connected to the internal I/O port port as the internal oscillator amplifier input pin. In this mode,

The external crystal is connected to the pin.

PCINT6 : Pin Change Interrupt 6. PB6 is an external interrupt source.

If PB6 is used for the crystal pin, the values of DDB6, PORTB6 and PINB6 will have no meaning.

- 53 -

Page 60

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

SCK / PCINT5 - Port B pin 5

SCK : SPI controller master device clock output, slave device clock input. When the SPI controller is configured as a slave device, This pin will be configured as an input pin, not controlled by DDB5. When the SPI controller is configured as a master device, The direction of this pin is controlled by DDB5. When this pin is forced by the SPI input, it can still pass PORTB5 Bit control pull-up resistor.

PCINT5 : Pin level change interrupt. PB5 is an external interrupt source.

MISO / PCINT4- Port B pin 4

MISO : SPI control master device data input, slave device data output. When the SPI is configured as a master device, this pin will be Will be forced to input, not subject to DDB4 control. When the SPI is used as a slave device, this pin is the data side To control by DDB4. When this pin is forced by the SPI controller, its pull-up resistor can still pass PROTB4 control.

PCINT4 : Pin level change interrupt. PB4 is an external interrupt source.

MOSI / OC2A / PCINT3- Port B pin 3

MOSI : SPI controller master device data output, slave device data input. When the SPI is configured as a slave, this pin Will be forced to input, and not subject to DDB3 control. When the SPI controller is configured as a master device, this pin is The method is controlled by DDB3. When this pin is forced by the SPI control input, it can still be controlled by PORTB3 Of the pull-up resistor.

OC2A : Timer / Counter 2 Group A compare match output. PB3 can be used as a timer / counter 2 compare match Department of output. The pin must be set to output via DDB3. At the same time, OC2A is also the PWM mode of Timer 2 Type output pin.

PCINT3 : Pin level change interrupt. PB3 is an external interrupt source.

SSN / OC1B / PCINT2 - Port B pin 2

SSN : SPI slave device chip select input. When the SPI controller is configured as a slave, this pin will be forced for input, And is not controlled by DDB2. As a slave device, the SPI controller is driven low on the SSN is valid. When the SPI controls The device is configured as the master device and the direction of this pin is controlled by DDB2. When this pin is forced by the SPI controller to lose After entering, you can still control the pull-up resistor via PORTB2.

OC1B : B / O of the Timer / Event Counter 1 compare match output. PB2 can be used as a timer / counter 1 compare match Department of output. The pin must be set to output via DDB2. At the same time, OC1B is also the PWM mode of Timer 1 Type output pin.

PCINT2 : Pin level change interrupt. PB2 is an external interrupt source.

OC1A / PCINT1 - Port B pin 1

OC1A : Group A compare match output for Timer / Event Counter 1. PB1 can be used as a timer / counter 1 compare match Department of output. The pin must be set to output via DDB1. At the same time, OC1A is also the PWM mode of Timer 1 Type output pin.

PCINT1 : Pin level change interrupt. PB1 is an external interrupt source.

- 54 -

Page 61

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ICP1 / CLKO / PCINT0 - Port B pin 0

ICP1 : Capture input pin for Timer / Event Counter 1

CLKO: System operating clock output, when CLKPR register CLKOE bit is 1, this pin will be forced to Output, not controlled by DDB0. The output frequency is the operating clock frequency of the current system. **PCINT0**: Pin level change interrupt. PB0 is an external interrupt source.

PB7... PB4 multiplexing control logic table

Signal name	PB7 / XTAL2 /	PB6 / XTAL1 /	PB5 / SCK	PB4 / MISO
	TOSC2 / PCINT7	TOSC1 / PCINT6	PCINT5	PCINT4
PUOE	OSCEN AS2	OSCEN AS2	SPE & MSTR	SPE & MSTR
PUOV	0	0	PORTB5 & PUD POI	RTB4 & PUD
DDOE	OSCEN AS2	OSCEN AS2	SPE & MSTR	SPE & MSTR
DDOV	0	0	0	0
PVOE	0	0	SPE & MSTR	SPE & MSTR
PVOV	0	0	SCK Output	SPI Slave Output
DIEOE	PCINT7 Enable	PCINT6 Enable PCIN	NT5 Enable PCINT4 E	nable
DIEOV	1	1	1	1
DI	PCINT7 Input	PCINT6 Input	PCINT5 Input	PCINT4 Input
			SCK Input	SPI Master Input
AIO	XTAL2	XTAL1	-	-
	TOSC2	TOSC1		

[Explanation]: OSCEN includes OSCK_EN and OSCM_EN, please refer to PMCR register description

PB3 ... PB0 Alternate function control logic table

PB3 / MOSI /	PB2 / SSN /	PB1 / OC1A /	PB0 / ICP1 /
OC2A / PCINT3	OC1B / PCINT2	PCINT1	CLKO / PCINT0
SPE & MSTR	SPE & MSTR	0	0
PORTB3 & PUD	PORTB2 & PUD 0		0
SPE & MSTR	SPE & MSTR	0	CLKO ENABLE 0
0	0	0	1
SPE & MSTR +	OC1B ENABLE OC	1A ENABLE CLKO E	NABLE 0
OC2A ENABLE			
SPI Master Output	OC1B	OC1A	CLKO
OC2A			
PCINT3 Enable	PCINT2 Enable PCIN	NT1 Enable PCINT0 E	nable
1	1	1	1
PCINT3 Input	PCINT2 Input	PCINT1 Input	PCINT0 Input
SPI Slave Input	SPI Slave Select		ICP1 Input
-	-	-	-
	PB3 / MOSI / OC2A / PCINT3 SPE & MSTR PORTB3 & PUD SPE & MSTR 0 SPE & MSTR + OC2A ENABLE SPI Master Output OC2A PCINT3 Enable 1 PCINT3 Input SPI Slave Input	PB3 / MOSI /PB2 / SSN /OC2A / PCINT3OC1B / PCINT2SPE & MSTRSPE & MSTRPORTB3 & PUDPORTB2 & PUD 0SPE & MSTROSPE & MSTRSPE & MSTR00SPE & MSTR +OC1B ENABLE OCOC2A ENABLEOC1BSPI Master OutputOC1BOC2APCINT3 EnablePCINT3 EnablePCINT2 Enable PCIN11PCINT3 InputSPI Slave Select	PB3/MOSI/ PB2/SSN/ PB1/OC1A/ OC2A/PCINT3 OC1B/PCINT2 PCINT1 SPE & MSTR SPE & MSTR 0 PORTB3 & PUD PORTB2 & PUD 0 SPE & MSTR SPE & MSTR SPE & MSTR 0 0 0 0 SPE & MSTR + OC1B ENABLE OC1A ENABLE CLKO E OC2A ENABLE SPI Master Output OC1B OC2A OC1A OC2A PCINT3 Enable PCINT2 Enable PCINT0 E 1 1 1 PCINT3 Input PCINT2 Input PCINT1 Input SPI Slave Input SPI Slave Select SPI Slave Select

- 55 -

LGT8FX8D Series - Programming Manual 1.0.5

Port C multiplexing function

Pin	Alternate function description
DC4	RESETN (external reset input)
PC0	PCINT14 (pin change interrupt 14)
	ADC5 (ADC input channel 5)
PC5	SCL (TWI clock line)
	PCINT13 (pin change interrupt 13)
	ADC4 (ADC input channel 4)
PC4	SDA (TWI data cable)
	PCINT12 (pin change interrupt 12)
D.C.2	ADC3 (ADC input channel 3)
PC3	PCINT11 (pin change interrupt 11)
D.C.2	ADC2 (ADC input channel 2)
PC2	PCINT10 (pin change interrupt 10)
201	ADC1 (ADC input channel 1)
PCI	PCINT9 (pin change interrupt 9)
D	ADC0 (ADC input channel 0)
PC0	PCINT8 (pin change interrupt 8)

RESETN / PCINT4- Port C pin 6

RESETN : External reset input pin. After a power-on reset, this pin defaults to an external reset function. Can pass through IOCR The register turns off the external reset function. When the external reset function is turned off, this pin can be used as a general purpose I / O. But need to It should be noted that in the power and other reset process, this pin defaults to reset input, so if the user needs Use this pin of the general I / O function, the external circuit can not affect the chip power and reset process, it is recommended that this The pins are configured as I / O for the output function and an external pull-up resistor is added externally. PCINT14 : Pin level change interrupt. After turning off the external reset input function of this pin, PC6 can be done outside Interrupt source.

SCL / ADC5 / PCINT13 - Port C pin 5

SCL : TWI interface clock signal. After the TWEN bit in the TWCR register is set, the TWI interface is enabled and PC5 will be enabled TWI control, become TWI interface clock signal. ADC5 : ADC input channel 5. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section. PCINT13 : Pin Change Interrupt 13.

SDA / ADC4 / PCINT12 - Port C pin 4

SDA : TWI interface data signal. After the TWEN bit in the TWCR register is set, the TWI interface is enabled and PC4 will be enabled TWI control, as TWI interface data signal.

 $\label{eq:ADC4} \textbf{ADC4}: \textbf{ADC input channel 4}. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section.$

PCINT12 : Pin Change Interrupt 12.

- 56 -

Page 63

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ADC3 / PCINT11 - Port C pin 3

ADC3 : ADC input channel 3. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section. PCINT11 : Pin change interrupt 11.

ADC2 / PCINT1 - Port C pin 2

ADC2 : ADC input channel 2. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts

On the impact of analog circuits. Please refer to the ADC-related section. **PCINT10** : Pin change interrupt 10.

ADC1 / PCINT9 - Port C pin 1

 $\label{eq:ADC1} \textbf{ADC1}: \textbf{ADC input channel 1}. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section.$

PCINT9 : Pin Change Interrupt 9.

ADC0 / PCINT8 - Port C pin 0

 $\label{eq:ADC0} \textbf{ADC0}: ADC \text{ input channel 0. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section.$

PCINT8 : Pin change interrupt 8.

PC6... PC4 multiplexing control logic table

Signal name	PC6 / RESETN /	PC5 / ADC5 / TK9 / SCL /	PC4 / ADC4 / TK8 / SDA
Signal name	PCINT14	PCINT13	PCINT12
PUOE	RSTIOEN	TWI Enable	TWI Enable
PUOV	1	PORTC4 & PUD	PORTC4 & PUD
DDOE	RSTIOEN	TWI Enable	TWI Enable
DDOV	0	SCL Output	SDA Output
PVOE	RSTIOEN	TWI Enable	TWI Enable
PVOV	1	0	0
DIEOE	PCINT14 Enable +	PCINT13 Enable +	PCINT12 Enable +
	RSTIOEN	TWI Enable	TWI Enable
DIEOV	1	1	1
DI	PCINT14 Input	PCINT13 Input	PCINT12 Input
	External Reset Input	SCL Input	SDA Input
AIO	-	ADC5	ADC4

PC3 ... PC0 multiplexing control logic table

Signal name	PC3 / ADC3 /	PC2 / ADC2 /	PC1 / ADC1 /	PC0 / ADC0 /
	PCINT11	PCINT10	PCINT9	PCINT8
PUOE	0	0	0	0
PUOV	0	0	0	0

- 57 -

Page 64

LGT8FX8D Series - Programming Manual 1.0.5				een Technologies Co., LTD
DDOE	0	0	0	0
DDOV	0	0	0	0
PVOE	0	0	0	0
PVOV	0	0	0	0
DIEOE	PCINT11 Enable PCI	NT10 Enable PCINT9	Enable PCINT8 Enable	•
DIEOV	1	1	1	1
DI	PCINT11 Input PCIN	T10 Input PCINT9 Inp	ut	PCINT8 Input
AIO	ADC3	ADC2	ADC1	ADC0

Port D multiplexing function

Pin	Alternate function description
PD7	AIN1 (analog comparator negative input)
	PCINT23 (pin change interrupt 23)
PD6	AIN0 (analog comparator positive input)
	OC0A (Timer / Event Counter 0 Compare Match Output A)
	PCINT22 (pin change interrupt 22)

	T1 (Timer / Counter 1 external count clock input)
PD5	OC0B (Timer / Event Counter 0 Compare Match Output B)
	PCINT21 (pin change interrupt 21)
	XCK (USART external clock input / output)
PD4	T0 (Timer / Event Counter 0 External Count Clock Input)
	PCINT20 (pin change interrupt 20)
	INT1 (external interrupt input 1)
PD3	OC2B (Timer / Event Counter 2 Compare Match Output B)
	PCINT19 (pin change interrupt 19)
DD2	INT0 (external interrupt input 0)
PD2	PCINT18 (pin change interrupt 18)
DID 1	TXD (USART data output)
FDI	PCINT17 (pin change interrupt 17)
BD0	RXD (USART data entry)
r D0	PCINT16 (pin change interrupt 16)

AIN1 / OC2B / PCINT23 - Port D pin 7

AN1 : Analog Comparator Negative Input. The digital input function of the PD7 pin is turned off by the DIDR1 register and is turned off Port pull-up resistor to avoid digital port interference to the analog circuit.

OC2B : B / O of the Timer / Event Counter 2 compare match output. PD7 can be used as a timer / counter 2 compare match Department of output. The pin must be set to output via DDD7. At the same time, OC2B is also the PWM mode of Timer 2 Type output pin.

PCINT23 : Pin Change Interrupt 23.

AIN0 / OC0A / PCINT22- Port D pin 6

AN0 : Analog Comparator Positive Input. The digital input function of the PD6 pin is turned off by the DIDR1 register and is turned off

- 58 -

Page 65

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Port pull-up resistor to avoid digital port interference to the analog circuit.

OC0A : Timer / Counter 0 Group A compare match output. PD6 can be used as a timer / counter 0 compare match Department of output. The pin must be set to output via DDD6. At the same time, OC0A is also the PWM mode of Timer 0 Type output pin.

PCINT22 : Pin change interrupt 22.

T1 / OC0B / PCINT21 - Port D pin 5

T1 : External count clock input for Timer / Event Counter 1

OC0B : Timer / Counter 0 Group B compare match output. PD5 can be used as a timer / counter 0 compare match Department of output. In this case, the pin must be set to output via DDD5. At the same time, OC0B is also the PWM mode of Timer 0 Type output pin. PCINT21 : Pin change interrupt 21.

XCK / T0 / PCINT20 - Port D pin 4

XCK : Synchronous mode USART external clock signal T0 : External count clock input for Timer / Event Counter 0 PCINT20 : Pin change interrupt 20.

INT1 / OC2B / PCINT19 - Port D pin 3

INT1 : External interrupt input 1
OC2B : B / O of the Timer / Event Counter 2 compare match output. PD3 can be used as a timer / counter 2 compare match
Department of output. In this case, the pin must be set to output via DDD3. At the same time, OC2B is also the PWM mode of Timer 2
Type output pin.

PCINT19 : Pin Change Interrupt 19.

INT0 / PCINT18 - Port D pin 2

INT0 : External interrupt input 0 **PCINT18** : Pin change interrupt 18.

TXD / PCINT17 - Port D pin 1

TXD : Transfer data (USART data output). After the USART transmitter is enabled, PD1 will be forced to output DDD1 control.PCINT17 : Pin Change Interrupt 17.

RXD / PCINT16 - Port D pin 0

RXD : Transfer data (USART data entry). After the USART receiver is enabled, PD0 will be forced as input DDD0 control. When the pin is forced into the input by USART, the pull-up resistor can still be controlled by the PORTD0 bit. **PCINT16** : Pin change interrupt 16.

- 59 -

Page 66

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

PD7 PD4 m	ultiplexing control lo	gic table:		
C:	PD7 / AIN1 /	PD6 / AIN0 /	PD5 / OC0B /	PD4 / XCK /
Signai name	PCINT23	OC0A / PCINT22	PCINT21	T0 / PCINT20
PUOE	0	0	0	0
PUOV	0	0	0	0
DDOE	0	0	0	0
DDOV	0	0 0		0
PVOE	0	OC0AEN & OC0AS	OC0B Enable	XCKOEN
PVOV	0	OC0A OC0B		XCK Output
DIEOE	PCINT23 Enable PC	INT22 Enable PCINT2	1 Enable	PCINT20 Enable
			+ T1EN	+ XCKIEN
				+ T0EN
DIEOV	1	1	1	1
DI	PCINT23 Input PCI	NT22 Input	PCINT21 Input	PCINT20 Input
			T1 Input	XCK Input
				T0 Input
AIO	-	-	-	-
PD3 PD0 m	ultiplexing control lo	gic table:		
Signal name	PD3 / OC2B /	PD2 / INT0 /	PD1 / TXD /	PD0 / RXD /
	INT1 / PCINT19	PCINT18	PCINT17	PCINT16
PUOE	0	0	TXEN	RXEN
PUOV	0	0	0	PORTD0 & PUD

TXEN

TXEN

TXD

1

1

RXEN

0

0

0

1

-

RXD

+ RXEN

PCINT17 Enable PCINT16 Enable

PCINT17 Input PCINT16 Input

0

0

0

0

1

PCINT18 Enable

+ INT0 Enable

PCINT18 Input

INT0 Input

DDOE

DDOV

PVOE

PVOV

DIEOE

DIEOV

DI

AIO

0

0

1

OC2B Enable

PCINT19 Enable

+ INT1 Enable

PCINT19 Input

INT1 Input

OC2B

LogicGreen Technologies Co., LTD

Port E multiplexing function

Pin	Alternate function description
DEC	VREF (ADC external reference voltage)
PEO	PCINT30 (pin change interrupt 30)
DE5	CLKO (system clock output)
FEJ	PCINT29 (pin change interrupt 29)
DE4	OC0A (Timer / Event Counter 0 Compare Configuration Output A)
PE4	PCINT28 (pin change interrupt 28)
PE3	ADC7 (ADC input channel 7)

- 60 -

Page 67

LGT8FX8D Series - Programming Manual 1.0.5

	PCINT27 (pin change interrupt 27)
DEO	SWD (SWD debugger data cable)
PE2	PCINT26 (pin change interrupt 26)
DE 1	ADC6 (ADC input channel 6)
FEI	PCINT25 (pin change interrupt 25)
DEO	SWC (SWD debugger clock input)
FEU	PCINT24 (pin change interrupt 24)

VREF / PCINT30 - Port E pin 6

VREF : ADC external reference power input, used as an analog function, the need to set the corresponding digital I / O input, And turn off the pull-up resistor to prevent digital circuits from interfering with analog circuits. PCINT30 : Pin change interrupt 30

CLKO / PCINT29 - Port E pin 5

CLKO : This function is the same as the CLKO function of PB0. Can be used as a backup pin for PB0 / CLKO PCINT29 : Pin Change Interrupt 29

OC0A / PCINT28 - Port E pin 4

OC0A : Timer / Counter 0 Group A compare match output. PE4 can be used as a timer / counter 0 compare match Department of output. The pin must be set to output via DDE4. At the same time, OC0A is also the PWM mode of Timer 0 Type output pin.

PCINT28 : Pin change interrupt 28

ADC7 / PCINT27 - Port E pin 3

ADC7 : ADC input channel 7. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section. PCINT27 : Pin change interrupt 27

SWD / PCINT26 - Port E pin 2

SWD: SWD debugger data cable. After the system power-on reset, PE2 defaults to SWD function. The user can pass by MCUSR register SWDD bit is set to turn off the SWD debugger function. SWD is turned off, the debugging function will not be possible use.

PCINT26 : Pin change interrupt 26

ADC6 / PCINT25 - Port E pin 1

 $\label{eq:ADC6} \textbf{ADC6}: \textbf{ADC input channel 6. The DIDR register is used to turn off digital functions of the M / A I / O to avoid digital parts On the impact of analog circuits. Please refer to the ADC-related section.$

Page 68

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

SWC / PCINT24 - Port E pin 0

SWC : SWD debugger clock line. After the system power-on reset, PE0 defaults to SWC function. The user can pass by MCUSR register SWDD bit is set to turn off the SWD debugger function. SWD is turned off, the debugging function will not be possible use.

PCINT24 : Pin change interrupt 24

PE6 ... PE4 multiplexing control logic table

Signal name	PE6 / VREF /	PE5 / CLKO /	PE4 / OC0A /
Signai name	PCINT30	PCINT29	PCINT28
PUOE	REFIOEN	0	0
PUOV	0	0	0
DDOE	REFIOEN	CLKO Enable 1	0
DDOV	0	1	0
PVOE	REFIOEN	CLKO Enable 1	OC0AEN & OC0AS
PVOV	1	CLKO	OC0A
DIEOE	PCINT30 Enable +	PCINT29 Enable	PCINT28 Enable
	REFIOEN		
DIEOV	1	1	1
DI	PCINT30 Input	PCINT29 Input	PCINT28 Input
AIO	VREF	-	-

PE3 ... PE0 Multiplexed control logic table:

Signal name	PE3 / ADC7 / TK11 /	PE2 / TK7 / SWD /	PE1 / ADC6 / TK10 /	PE0 / TK6 / SWC /	
Signal name	PCINT27	PCINT26	PCINT25	PCINT24	
PUOE	0	SWDD	0	SWDD	
PUOV	0	1	0	1	
DDOE	0	SWDD	0	SWDD	
DDOV	0	SWD Output	0	0	
PVOE	0	SWDD	0	0	
PVOV	0	0	0	0	
DIEOE	PCINT27 Enable PCINT26 Enable		PCINT25 Enable PCINT24 Enable		
		+ SWDD		+ SWDD	
DIEOV	1	1	1	1	
DI	PCINT27 Input	PCINT24 Input	PCINT25 Input	PCINT24 Input	
		SWD Input		SWC Input	
AIO	ADC7	-	ADC6	-	

Page 69

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register definition

MCU Contr	rol Register	- MCUCR	1					
			MCUCR ·	• MCU contro	l register			
MCUCR: 0x35	5 (0x55)			Default: 0	x00			
MCUCR FW	KPEN FPDEN	1	PUD	-	-	-	IVSEL	IVCE
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	-	-	-	\mathbf{R} / \mathbf{W}	R / W
Initial value	0	0	0	-	-	-	0	0
Bit definition								
[0]	IVCE	Interru	pt Vector Selec	t the Change I	Enable bit			
[1]	IVSEL	Interru	pt vector select	ion bit				
[2]	-	Keep 1	not used					
[3]	-	Keep 1	not used					
[4]	PUD	Global	Global pull-up disabled bit					
[5]	-	Keep 1	not used					
[6]	FPDEN	FLAS	H power down o	control				

Port B Output Data Register - PORTB

FWKPEN

[7]

PORTB: 0x05 (0x25)

PORTB	PORTB7 PORTB6 PORTB4 PORTB1 PORTB1 PORTB1 PORTB1 PORTB1

Fast wake mode control

R / W	R / W	\mathbf{R} / \mathbf{W}	R / W					
Initial value	0	0	0	0	0	0	0	0
[0]	PORTB0	Port B	outputs bit 0					
[1]	PORTB1	Port B	outputs bit 1					
[2]	PORTB2	Port B	outputs bit 2					
[3]	PORTB3	Port B	outputs bit 3					
[4]	PORTB4	Port B	outputs bit 4					
[5]	PORTB5	Port B	outputs bit 5					
[6]	PORTB6	Port B	outputs bit 6					
[7]	PORTB7	Port B	outputs bit 7					

Port B Direction Register - DDRB

DDRB - port B direction register Default: 0x00

DDRB: 0x04 (0x24)

- 63 -

Page 70

LGT8FX8D Series	- Programm	ning Manual 1.	.0.5			LogicG	reen Technolo	ogies Co., LTD
DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0
\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W
Initial value	0	0	0	0	0	0	0	0

[0] DDB0 PB0 direction control bit

[1]	DDB1	PB1 direction control bit
[2]	DDB2	PB2 direction control bit
[3]	DDB3	PB3 direction control bit
[4]	DDB4	PB4 direction control bit
[5]	DDB5	PB5 direction control bit
[6]	DDB6	PB6 direction control bit
[7]	DDB7	PB7 direction control bit

Port B Input Data Register - PINB

			PINB - Po	rt ${f B}$ input data	register			
PINB: 0x03 (0	0x23)			Default: 0:	x00			
PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}				
Initial value	0	0	0	0	0	0	0	0
[0]	PINB0	PB0 p	ort data					
[1]	PINB1	PB1 p	ort data					
[2]	PINB2	PB2 p	ort data					
[3]	PINB3	PB3 p	ort data					
[4]	PINB4	PB4 p	ort data					
[5]	PINB5	PB5 p	ort data					
[6]	PINB6	PB6 p	ort data					

Port C Output Data Register - PORTC

PINB7

PB7 port data

[7]

			PORTC - Por	rt C output data	a register			
PORTC: 0x08	(0x28)			Default: 0x	:00			
PORTC	-	PORTC6 PC	ORTC5 PORTC	4 PORTC3 PC	ORTC1 PORTC	1 PORTC1 PC	ORTC	
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}				
Initial value	-	0	0	0	0	0	0	0
[0]	PORTC0	Port C	outputs bit 0					
[1]	PORTC1	Port C	outputs bit 1					

- 64 -

LogicGreen Technologies Co., LTD

Page 71

LGT8FX8D	Series -	Programming	Manual	1.0.5

PORTC2	Port C outputs bit 2
PORTC3	Port C outputs bit 3
PORTC4	Port C outputs bit 4
PORTC5	Port C outputs bit 5
PORTC6	Port C outputs bit 6
-	Keep not used
	PORTC2 PORTC3 PORTC4 PORTC5 PORTC6

Port C direction register - DDRC

	DDRC - port C direction register
DDRC: 0x07 (0x27)	Default: 0x00

DDRC - DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	R / W					
Initial value	-	0	0	0	0	0	0	0

[0]	DDC0	PC0 direction control bit
[1]	DDC1	PC1 direction control bit
[2]	DDC2	PC2 direction control bit
[3]	DDC3	PC3 direction control bit
[4]	DDC4	PC4 direction control bit
[5]	DDC5	PC5 direction control bit
[6]	DDC6	PC6 direction control bit
[7]	-	Keep not used

Port C Input Data Register - PINC

PINC - Port C input data register								
PINB: 0x06 (0x	26)			Default: 0:	x00			
PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \mid \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}
Initial value	-	0	0	0	0	0	0	0
[0]	PINC0	PC0 p	ort data					
[1]	PINC1	PC1 p	ort data					
[2]	PINC2	PC2 p	ort data					
[3]	PINC3	PC3 p	ort data					
[4]	PINC4	PC4 p	ort data					
[5]	PINC5	PC5 p	ort data					
[6]	PINC6	PC6 p	ort data					
[7]	-	Keep	not used					

- 65 -

Page 72

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Port D Output Data Register - PORTD

			PORTD - Por	t D Output Dat	a Register			
PORTD: 0x0	B (0x2B)			Default: 0x	:00			
PORTD	PORTD7 POR	TD6 PORTI	05 PORTD4 PC	ORTD1 PORTI	D2 PORTD1 PO	ORTD0		
\mathbf{R} / \mathbf{W}	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}
Initial value	0	0	0	0	0	0	0	0
[0]	PORTD0	Port D	outputs bit 0					
[1]	PORTD1	Port D	outputs bit 1					
[2]	PORTD2	Port D	outputs bit 2					
[3]	PORTD3	Port D	outputs bit 3					
[4]	PORTD4	Port D	outputs bit 4					
[5]	PORTD5	Port D	outputs bit 5					
[6]	PORTD6	Port D	outputs bit 6					
[7]	PORTD7	Port D	outputs bit 7					

Port D Direction Register - DDRD

DDRD - port D direction register

https://translate.googleusercontent.com/translate_f

DDRD: 0x0A (0x2

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

0x0A	(0x2A)

DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$
Initial value	0	0	0	0	0	0	0	0

Default: 0x00

[0]	DDD0	PD0 direction control bit
[1]	DDD1	PD1 direction control bit
[2]	DDD2	PD2 direction control bit
[3]	DDD3	PD3 direction control bit
[4]	DDD4	PD4 direction control bit
[5]	DDD5	PD5 direction control bit
[6]	DDD6	PD6 direction control bit
[7]	DDD7	PD7 direction control bit

Port D Input Data Register - PIND

	PIND - Port D input data register								
PIND: 0x09 (0x29) Default: 0x00									
PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	$\mathbf{R} \ / \ \mathbf{W}$	

- 66 -

Page 73

LGT	8FX8D Series - I	Programmin	LogicG	LogicGreen Technologies Co., LTD					
	Initial value	0	0	0	0	0	0	0	0
	[0]	PIND0	PD0 pc	ort data					
	[1]	PIND1	PD1 pc	ort data					
	[2]	PIND2	PD2 pc	ort data					
	[3]	PIND3	PD3 pc	ort data					
	[4]	PIND4	PD4 pc	ort data					
	[5]	PIND5	PD5 pc	ort data					
	[6]	PIND6	PD6 pc	ort data					
	[7]	PIND7	PD7 po	ort data					

Port E Output Data Register - PORTE

PORTE - Port E output data register										
PORTE: 0xA9		Default: 0x00								
PORTE	-	PORTE6 PC	RTE5 PORTE	4 PORTE3 PO	RTE2 PORTE	PORTE0				
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$		
Initial value	-	0	0	0	0	0	0	0		
[0]	PORTE0	Port E outputs bit 0								
[1]	PORTE1	Port E	outputs bit 1							
[2]	PORTE2	Port E	outputs bit 2							
[3]	PORTE3	Port E	outputs bit 3							
[4]	PORTE4	Port E	Port E outputs bit 4							
[5]	PORTE5	Port E outputs bit 5								
[6]	PORTE6	Port E	outputs bit 6							
[7]	-	Keep r	not used							

Port E Direction Register - DDRE									
			DDRE -	Port E direction	n register				
DDRE: 0xA8 Default: 0x00									
DDRE	-	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	\mathbf{R} / \mathbf{W}	
Initial value	-	0	0	0	0	0	0	0	
[0]	DDE0	PE0 d	irection contro	l bit					
[1]	DDE1	PE1 d	irection contro	l bit					
[2]	DDE2	PE2 d	irection contro	l bit					
[3]	DDE3	PE3 d	irection contro	l bit					

- 67 -

Page 74

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

[4]	DDE4	PE4 direction control bit
[5]	DDE5	PE5 direction control bit
[6]	DDE6	PE6 direction control bit
[7]	-	Keep not used

Port E Input Data Register - PINE

			PINE - Po	ort E input data	register			
PINE: 0xA7				Default: 0	x00			
PINE	-	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}						
Initial value	-	0	0	0	0	0	0	0
[0]	PINE0	PE0 p	ort data					
[1]	PINE1	PE1 p	ort data					
[2]	PINE2	PE2 p	ort data					
[3]	PINE3	PE3 p	ort data					
[4]	PINE4	PE4 p	ort data					
[5]	PINE5	PE5 p	ort data					
[6]	PINE6	PE6 p	ort data					
[7]	-	Keep	not used					

- 68 -

Page 75

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Pin level change interrupt

- 30 pin change interrupt sources
- 4 interrupt entries

Summary

The pin change interrupt is triggered by the PBn, PCn, PDn and PEn pins. As long as the pin change interrupt is enabled, ie Making these pins configured as an output can also trigger an interrupt. This can be used to generate software interrupts.

Any enabled PBn pin flip will trigger pin level interrupt PCI0, enable PCn pin flip will trigger PCI1, The enabled PDn pin flips to trigger PCI2, and the enabled PEn pin flips to trigger PCI3. Each pin is interrupted The enable is controlled by the PCMSK0, PCMSK1, PCMSK2 and PCMSK3 registers, respectively. All pin levels are changed Are detected asynchronously and can be used as a wake source in some sleep modes.

Register definition

Pin Change Interrupt register list								
register	address	Defaults	description					
PCICR	0x68	0x00	The pin changes the interrupt control register					
PCIFR	0x3B	0x00	The pin changes the interrupt flag register					
PCMSK0	0x6B	0x00	Pin Change Interrupt Mask Register 0					
PCMSK1	0x6C	0x00	Pin Change Interrupt Mask Register 1					
PCMSK2	0x6D	0x00	Pin Change Interrupt Mask Register 2					
PCMSK3	0x73	0x00	Pin Change Interrupt Mask Register 3					

PCICR - Pin change interrupt control register

			PCICR - Pir	change inter	rupt control regis	ster					
Address:	0x68	Default: 0x00									
Bit	7	6	5	4	3	2	1	0			
Name	-	-	-	-	PCIE3	PCIE2	PCIE1	PCIE0			
\mathbf{R} / \mathbf{W}	-	-	-	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W			
Initial	0	0	0	0	0	0	0	0			
Bit	Name	description									
7:4	-	Keep it.									
3	PCIE3	Pin Change Inte	rrupt Enable Co	ontrol Bit 3.							
		When the PCIE	B bit is set to "1	" and the glob	al interrupt is en	abled, pin chang	e interrupt 3 is	enabled. Any on	to make		
		The PEn pin can	change the PC	13 interrupt. T	The enable of the	PEn pin interru	pt can be detern	nined by			
		PCMSK3 registe	PCMSK3 register to control								

When the PCIE3 bit is set to "0", the pin change interrupt 3 is disabled.

Pin Change Interrupt Enable Control Bit 2. 2 PCIE2

Page 76

LGT8FX8D S	eries - Prog	ramming Manua	1.0.5		LogicGreen Technologies Co., LTD				
1	PCIE1	When the PCIE2 bit is set to "1" and the global interrupt is enabled, pin change interrupt 2 is enabled. Any one to make The PDn pin can change the PCI2 interrupt. The enable of the PDn pin interrupt can be determined by PCMSK2 register to control. When the PCIE2 bit is set to "0", the pin change interrupt 2 is disabled. Pin Change Interrupt Enable Control bit 1. When the PCIE1 bit is set to "1" and the global interrupt is enabled, pin change interrupt 1 is enabled. Any one to make The PCn pin can change the PCI1 interrupt. PCn pin interrupt enable can be made by							
		The PCn pin car PCMSK1 registe When the PCIE	The PCn pin can change the PC11 interrupt. PCn pin interrupt enable can be made by PCMSK1 register to control. When the PCIE1 bit is set to "0", pin change interrupt 1 is disabled.						
0	 When the PCIE1 bit is set to "0", pin change interrupt 1 is disabled. PCIE0 Pin Change Interrupt Enable Control Bit 0. When the PCIE0 bit is set to "1" and the global interrupt is enabled, pin change interrupt 0 is enabled. Any one to n Can change the level of the PBn pin will produce PCI0 interrupt. The enable of the PBn pin interrupt can be determ PCMSK0 register to control. When the PCIE0 bit is set to "0", the pin change interrupt 0 is disabled. 						e to make etermined by		
PCIFI	R - Pin Ch	ange Interrupt F	lag Register PCIFR - Pin	Change Interru	ipt Flag Register				
Address:	0x3B				Default	: 0x00			
Bit	7	6	5	4	3	2	1	0	
Name	-	-	-	-	PCIF3	PCIF2	PCIF1	PCIF0	
R / W Initial	- 0	- 0	-	- 0	R / W 0	R / W 0	R / W 0	R / W 0	

Bit	Name	description
7:4	-	Keep it.
3	PCIF3	Pin change interrupt flag bit 3.
		The PCIV3 is set for any of the enabled PEn pin changes. When both PCIE3 and global interrupts are set
		Bit, the MCU will jump to the PCI3 interrupt entry address. The enable of the PEn pin interrupt can be selected by PCMSK3
		Register to control.
		The execution of the interrupt service routine or writing "1" to the PCIF3 bit will clear the PCIF3 bit.
2	PCIF2	Pin change interrupt flag bit 2.
		The level change of any enabled PDn pin will set PCIF2. When both PCIE2 and global interrupts are set
		Bit, the MCU will jump to the PCI2 interrupt entry address. The PDn pin interrupt enable is enabled by PCMSK2
		Register to control.
		The execution of the interrupt service routine or writing "1" to the PCIF2 bit will clear the PCIF2 bit.
1	PCIF1	Pin change interrupt flag bit 1.
		The level change of any enabled PCn pin sets PCIF1. When both PCIE1 and global interrupts are set
		Bit, the MCU will jump to the PCI1 interrupt entry address. The PCn pin interrupt can be enabled by PCMSK1, respectively
		Register to control.
		The execution of the interrupt service routine or writing "1" to the PCIF1 bit clears the PCIF1 bit.
0	PCIF0	The pin changes the interrupt flag bit 0.
		The level change of any enabled PBn pin sets PCIF0. When both PCIE0 and global interrupts are set

- 70 -

Page 77

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Bit, the MCU will jump to the PCI0 interrupt entry address. The enable of the PBn pin interrupt can be set by PCMSK0

Register to control.

The execution of the interrupt service routine or writing "1" to the PCIF0 bit clears the PCIF0 bit.

PCMSK0 - Pin Change Interrupt Mask Register 0

Address: 0x6B			Default: 0x00						
Bit	7	6	5	4	3	2	1	0	
Name	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	
$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	

Bit Name		description					
7	PCINT7	Pin change enable mask 7.					
		When the PCINT7 bit is set to "1", the PB7 pin change interrupt is enabled. The level on the PB7 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When the PCINT7 bit is set to "0", the PB7 pin change interrupt is disabled.					
6	PCINT6	Pin change enable mask bit 6.					
		When the PCINT6 bit is set to "1", the PB6 pin change interrupt is enabled. The level on the PB6 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When setting the PCINT6 bit to "0", the PB6 pin change interrupt is disabled.					
5	PCINT5	Pin change enable mask 5.					
		When the PCINT5 bit is set to "1", the PB5 pin change interrupt is enabled. The level on the PB5 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When setting the PCINT5 bit to "0", the PB5 pin change interrupt is disabled.					
4	PCINT4	Pin change enable mask bit 4.					
		When the PCINT4 bit is set to "1", the PB4 pin change interrupt is enabled. The level on the PB4 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When the PCINT4 bit is set to "0", the PB4 pin change interrupt is disabled.					
3	PCINT3	Pin change enable mask bit 3.					
		When the PCINT3 bit is set to "1", the PB3 pin change interrupt is enabled. The level on the PB3 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When the PCINT3 bit is set to "0", the PB3 pin change interrupt is disabled.					
2	PCINT2	Pin change enable mask bit 2.					
-		When the PCINT2 bit is set to "1", the PB2 pin change interrupt is enabled. The level on the PB2 pin					
		The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					
		When setting the PCINT2 bit to "0", the PB2 pin change interrupt is disabled.					
1		Pin change enable mask bit 1					
	PCINT1						
1	PCINT1	When the PCINT1 bit is set to "1", the PB1 pin change interrupt is enabled. The level on the PB1 pin					
I	PCINTI	When the PCINT1 bit is set to "1", the PB1 pin change interrupt is enabled. The level on the PB1 pin The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated.					

- 71 -

Page 78

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

0 PCINT0 Pin change enable mask bit 0.

When setting the PCINT0 bit to "1", the PB0 pin change interrupt is enabled. The level on the PB0 pin The change will set PCIF0. If PCIE0 bit and global interrupt are set, a PCI0 interrupt will be generated. When setting the PCINT0 bit to "0", the PB0 pin change interrupt is disabled.

PCMSK1 - Pin Change Mask Register 1

PCMSK1 - Pin Change Interrupt Mask Register 1

Address: 0x6C

Default: 0x00

Bit

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Bit	7	6	5	4	3	2	1	0
Name	-	PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9						
\mathbf{R} / \mathbf{W}	-	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W
Initial	0	0	0	0	0	0	0	0

Bit	Name	description
7	-	Keep it.
6	PCINT14 p	in change enable mask 14.
		When the PCINT14 bit is set to "1", the PC6 pin change interrupt is enabled. The level on the PC6 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT14 bit is set to "0", the PC6 pin change interrupt is disabled.
5	PCINT13 p	in change enable mask bit 13.
		When the PCINT13 bit is set to "1", the PC5 pin change interrupt is enabled. The level on the PC5 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT13 bit is set to "0", the PC5 pin change interrupt is disabled.
4	PCINT12 p	in change enable mask 12.
		When the PCINT12 bit is set to "1", the PC4 pin change interrupt is enabled. The level on the PC4 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT12 bit is set to "0", the PC4 pin change interrupt is disabled.
3	PCINT11 p	in change enable mask bit 11.
		When the PCINT11 bit is set to "1", the PC3 pin change interrupt is enabled. The level on the PC3 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT11 bit is set to "0", the PC3 pin change interrupt is disabled.
2	PCINT10 p	in change enable mask bit 2.
		When the PCINT10 bit is set to "1", the PC2 pin change interrupt is enabled. The level on the PC2 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT10 bit is set to "0", the PC2 pin change interrupt is disabled.
1	PCINT9	Pin change enable mask bit 1.
		When the PCINT9 bit is set to "1", the PC1 pin change interrupt is enabled. The level on the PC1 pin
		The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.
		When the PCINT9 bit is set to "0", the PC1 pin change interrupt is disabled.
0	PCINT8	Pin change enable mask bit 0.

PCINT8 Pin change enable mask bit 0. When the PCINT8 bit is set to "1", the PC0 pin change interrupt is enabled. The level on the PC0 pin The change will set PCIF1. If PCIE1 bit and global interrupt are set, a PCI1 interrupt will be generated.

- 72 -

Page 79

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

When setting the PCINT8 bit to "0", the PC0 pin change interrupt is disabled.

PCMSK2 - Pin Change Interrupt Mask Register 2

Address: 0x6D			Default: 0x00						
Bit	7	6	5	4	3	2	1	0	
Name PC	CINT23 PCIN	F22 PCINT21 PCI	INT20 PCINT	19 PCINT18 P	CINT17 PCINT	16			
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	
Bit	Name	description							
7	7 PCINT23 pin change enable mask bit 23.								
	When the PCINT23 bit is set to "1", the PD7 pin change interrupt is enabled. PD7 pin on the power								
		The ping chang	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.						
		When the PCINT23 bit is set to "0", the PD7 pin change interrupt is disabled.							

6 PCINT22 pin change enable mask bit 6.

https://translate.googleusercontent.com/translate_f

When the PCINT22 bit is set to "1", the PD6 pin change interrupt is enabled. PD6 pin on the power The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated. When the PCINT22 bit is set to "0", the PD6 pin change interrupt is disabled.

5	PCINT21 pin change enable mask bit 21.
	When the PCINT21 bit is set to "1", the PD5 pin change interrupt is enabled. PD5 pin on the power
	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.
	When the PCINT21 bit is set to "0", the PD5 pin change interrupt is disabled.
4	PCINT20 pin change enable mask bit 20.
	When the PCINT20 bit is set to "1", the PD4 pin change interrupt is enabled. PD4 pin on the power
	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.
	When the PCINT20 bit is set to "0", the PD4 pin change interrupt is disabled.
3	PCINT19 pin change enable mask bit 19.
	When the PCINT19 bit is set to "1", the PD3 pin change interrupt is enabled. PD3 pin on the power
	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.
	When the PCINT19 bit is set to "0", the PD3 pin change interrupt is disabled.
2	PCINT18 pin change enable mask 18.
	When the PCINT18 bit is set to "1", the PD2 pin change interrupt is enabled. PD2 pin on the power
	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.
	When the PCINT18 bit is set to "0", the PD2 pin change interrupt is disabled.
1	PCINT17 pin change enable mask bit 17.
	When the PCINT17 bit is set to "1", the PD1 pin change interrupt is enabled. PD1 pin on the power
	The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.
	When the PCINT17 bit is set to "0", the PD1 pin change interrupt is disabled.
0	PCINT16 pin change enable mask bit 16.

When the PCINT16 bit is set to "1", the PD0 pin change interrupt is enabled. PD0 pin on the power The ping change will set PCIF2. If PCIE2 bit and global interrupt are set, a PCI2 interrupt will be generated.

- 73 -

Page 80

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

When the PCINT16 bit is set to "0", the PD0 pin change interrupt is disabled.

PCM	8 K3 - Pin (Change Interrup	t Mask Regis	ter 3								
PCMSK	3 - Pin Chang	ge Mask Register 3										
Address	0x73		Default: 0x00									
D:4	7	6	£	4	2	2	,	0				
BIL	/	0 DCD/T20 DC	6 5 4 3 2 1 0									
Name	-	PCIN130 PC	INT29 PCINT.	28 PCINT2/ PC	JIN126 PCIN1	25 PCIN124						
R / W	-	R / W	R / W	R / W	R / W	R / W	R / W	R / W				
Initial	0	0	0	0	0	0	0	0				
Bit	Name	description										
7	-	Keep it.										
6	PCINT30	pin change enable	mask bit 30.									
		When the PCIN	NT30 bit is set t	o "1", the PE6 p	pin change inter	rupt is enabled	. PE6 pin on the	e power				
		Flat change wi	ll set PCIF3. If	PCIE3 bit and g	global interrupt	are set, PCI3 in	terrupt will be	generated.				
		When the PCIN	AT30 bit is set t	o "0", the PE6 p	oin change inter	rupt is disabled	L					
5	PCINT29	pin change enable	mask bit 39.									
		When the PCI	VT29 bit is set t	o "1", the PE5 p	oin change inter	rupt is enabled	. PE5 pin on the	e power				
		Flat change wi	ll set PCIF3. If	PCIE3 bit and g	zlobal interrupt	are set. PCI3 in	terrupt will be	generated.				
		When the PCIN	JT29 bit is set t	o "0" the PE5 r	nin change inter	munt is disabled		8				
	DODITO	· 1 11	1 1 : 20	o o , ale i 15 j	in enange inter	rupt is disubled						
4	PCIN128	pin change enable	mask bit 28.									
		When the PCI	VT28 bit is set t	o "1", the PE4 p	oin change inter	rupt is enabled	. PE4 pin on the	e power				
		Flat change wi	ll set PCIF3. If	PCIE3 bit and g	global interrupt	are set, PCI3 in	terrupt will be	generated.				

When the PCINT28 bit is set to "0", the PE4 pin change interrupt is disabled.

3 PCINT27 pin change enable mask bit 27.

When the PCINT27 bit is set to "1", the PE3 pin change interrupt is enabled. PE3 pin on the power Flat change will set PCIF3. If PCIE3 bit and global interrupt are set, PCI3 interrupt will be generated. When the PCINT27 bit is set to "0", the PE3 pin change interrupt is disabled.

PCINT26 pin change enable mask bit 26.

When the PCINT26 bit is set to "1", the PE2 pin change interrupt is enabled. PE2 pin on the power Flat change will set PCIF3. If PCIE3 bit and global interrupt are set, PCI3 interrupt will be generated. When the PCINT26 bit is set to "0", the PE2 pin change interrupt is disabled.

PCINT25 pin change enable mask bit 25.

When the PCINT25 bit is set to "1", the PE1 pin change interrupt is enabled. PE1 pin on the power Flat change will set PCIF3. If PCIE3 bit and global interrupt are set, PCI3 interrupt will be generated. When setting the PCINT25 bit to "0", the PE1 pin change interrupt is disabled.

0 PCINT24 pin change enable mask bit 24

When the PCINT24 bit is set to "1", the PE0 pin change interrupt is enabled. PE0 pin on the power Flat change will set PCIF3. If PCIE3 bit and global interrupt are set, PCI3 interrupt will be generated When setting PCINT24 bit to "0", the PE0 pin change interrupt is disabled.

- 74 -

Page 81

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

8 -bit timer / counter 0

- 8-bit counter
- · Two separate comparison units
- · When the compare match occurs, the counter is automatically cleared and loaded automatically
- · Phase-corrected PWM output without interference pulse
- · Frequency generator
- External event counter
- 10-bit clock prescaler
- · overflow and compare match interrupt
- with dead time control
- 8 selectable trigger sources automatically turn off the PWM output
- High-speed, high-resolution (500KHz @ 7Bit) PWM in high-speed clock mode

Overview

TC0 is a general-purpose 8-bit timer counter module that supports PWM output and can produce waveforms precisely. TC0 package
With one count clock generation unit, one 8-bit counter, waveform generation mode control unit and two output compare single
yuan. At the same time, TC0 can be shared with TC1 10-bit prescaler, you can also use the 10-bit prescaler. Pre-divided
Frequency on the system clock clkio or high speed clock rcm2x (internal 32M RC oscillator output clock rc32m 2 times the frequency)
Divide to produce the count clock Clkt0. The waveform generation mode control unit controls the operating mode and comparison of the counter
Out of the waveform. Depending on the operating mode, the counter is cleared for each count clock Clkt0, plus one or
Minus one operation. Clkt0 can be generated by an internal clock source or an external clock source. When the counter count value TCNT0 reaches the maximum
The value (equal to the maximum value 0xFF or the output compare register OCR0A, defined as TOP, defines the maximum value of MAX to show the area
Other), the counter will be cleared or decremented. When the counter count value TCNT0 reaches the minimum value (equal to
0x00, defined as BOTTOM), the counter will be added to an operation. When the counter count value TCNT0 arrives
OCR0A / OCR0B, also known as a compare match, will clear or set the output compare signal OC0A / OC0B, to
Generates PWM waveforms. When the dead time is enabled, the dead time set (the count corresponding to the DTR0 register
Clock) will be inserted into the generated PWM waveform. The software can be turned off by clearing the COM0A / COM0B bit to zero
OC0A / OC0B waveform output, or set the corresponding trigger source, when the trigger event occurs when the hardware automatically cleared
COM0A / COM0B bits to turn off the OC0A / OC0B waveform output.

The count clock can be generated by an internal or external clock source. The clock source selection and frequency selection are determined by the TCCR0B register CS0 bits to control, see the TC0 and TC1 prescaler sections for details.

The length of the counter is 8 bits and supports bidirectional counting. The waveform generation mode is the operating mode of the counter located by TCCR0A and The WGM0 bit of the TCCR0B register is controlled. According to the different operating modes, the counter for each count clock Clkt0 To achieve zero, plus one or minus one operation. When the count overflows, the count overflow flag TOV0 is located in the TIFR0 register Bit will be set. TC0 count overflow interrupt can be generated when interrupt is enabled.

The output compare unit compares the count value TCNT0 with the values of the output compare registers OCR0A and OCR0B. When TCNT0 Equal to OCR0A or OCR0B is called a compare match, the output compare flag OCF0A in the TIFR0 register or The OCF0B bit is set. TC0 output compare match interrupt can be generated when interrupt is enabled. Note that in the PWM operating mode, the OCR0A and OCR0B registers are double buffered registers. In normal mode

And CTC mode, the double buffering function is disabled. When the count reaches the maximum or minimum value, the value in the buffer register is synchronized

- 75 -

Page 82

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

New to compare registers OCR0A and OCR0B. See the description of the working mode section.

The waveform generator generates and controls the output mode control according to the waveform generation mode and uses the compare match and the count overflow to generate Output compare waveform signals OC0A and OC0B. The specific way of generating is described in the working mode and register section description. To output When comparing the waveform signals OC0A and OC0B to the corresponding pins, the data direction register for this pin must also be set to Output.

The picture below shows the internal structure of TC0. TC0 contains one count clock generation unit, one 8-bit counter, two inputs A comparison unit and two waveform generation control units.

TC0 structure diagram

Operating mode

Timing counter 0 has four different modes of operation, including normal mode (Normal), compare match clear (CTC) Mode, fast pulse width modulation (FPWM) mode and phase correction pulse width modulation (PCPWM) mode, Generates the mode control bit WGM0 [2: 0] to select. The four modes are described below in detail. Because there are two independent output ratios The units are represented by "A" and "B", respectively, and the lower output "x" is used to represent the two output compare cell channels.

Normal mode

https://translate.googleusercontent.com/translate f

The normal mode is the simplest mode of operation for the timer counter. The waveform generation mode control bit, WGM0 [2: 0] = 0,

- 76 -

Page 83

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The maximum value of the TOP is MAX (0xFF). In this mode, the count mode is incremented by one for each count clock After the counter reaches the TOP overflow, it returns to BOTTOM to restart. In the same value as the count value TCNT0 becomes zero Set the timer counter overflow flag TOV0 in the clock. The TOV0 flag in this mode is like the 9th count bit, just Will only be set to not be cleared. The overflow interrupt service routine automatically clears the TOV0 flag, which the software can use to improve it The resolution of the counter. There is no special case in normal mode to consider, you can always write a new count value. The waveform of the output compare signal OC0x is obtained by setting the data direction register of the OC0x pin to output. When COM0x = 1 , The OC0x signal is flipped when a compare match occurs. The frequency of the waveform in this case can be calculated using the following formula:

 $f_{oc0xnormal} = f_{sys} / (2 * N * 256)$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

The output compare unit can be used to generate interrupts, but interrupts are not recommended in normal mode, which takes too much CPU time.

CTC mode

When the WGM0 [2: 0] = 2 is set, the timer counter 0 enters the CTC mode and the maximum value of the count is OCR0A. in In this mode, the count mode is incremented by one for each count clock. When the value of the counter TCNT0 equals TOP The counter is cleared. OCR0A defines the maximum value of the count, that is, the resolution of the counter. This mode allows the user to be tolerant Easy control matches the frequency of the output and also simplifies the operation of the external event count.

When the counter reaches the maximum value of the count, the output compare match flag OCF0 is set and the corresponding interrupt enable is set Will be interrupted. The OCR0A register can be updated in the interrupt service routine to count the maximum value. In this mode

OCR0A does not use double buffering, the maximum value of the counter in the absence of a prescaler or a very low prescaler operation is updated to Be careful when approaching the minimum. If the value written to OCR0A is less than the value of TCNT0 at that time, the counter will be lost One match match. Before the next match match occurs, the counter has to count to TOP before starting from BOTTOM

Start counting to OCR0A value. As with the normal mode, the count value is set back to the BOTTOM count clock to set the TOV0 flag Mind

The waveform of the output compare signal OC0x is obtained by setting the data direction register of the OC0x pin to output. When COM0x = 1, The OC0x signal is flipped when a compare match occurs. The frequency of the waveform in this case can be calculated using the following formula:

 $f_{oc0xctc} = f_{sys} / (2 * N * (1 + OCR0x))$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

As can be seen from the formula, when the set OCR0A is 0x0 and no prescaler, you can get the maximum frequency of $f_{sys}/2$ output Waveform.

Fast PWM mode

When setting WGM0 [2: 0] = 3 or 7, the timer counter 0 enters the fast PWM mode and can be used to generate high frequency PWM waveform, the maximum value TOP is MAX (0xFF) or OCR0x, respectively. Fast PWM mode and other PWM modes The difference is that it is a one-way operation. The counter is incremented from the minimum value 0x00 to TOP and then back to BOTTOM to count. When the count value TCNT0 reaches OCR0x or BOTTOM, the output compare signal OC0x is set or cleared, depending on Compare the output mode COM0x settings, see the register description for details. Due to the use of one-way operation, fast PWM mode The operating frequency is twice the phase corrected PWM mode using bidirectional operation. High frequency characteristics make fast PWM mode available In power regulation, rectification and DAC applications. High-frequency signals can be reduced by the size of external components (inductive capacitors, etc.) While reducing system costs.

When the count value reaches the maximum value, the timer counter overflow flag TOV0 will be set and the compare buffer value will be updated To the comparison value. If the interrupt is enabled, the compare buffer OCR0x register can be updated in the interrupt service routine. The waveform of the output compare signal OC0x is obtained by setting the data direction register of the OC0x pin to output. The frequency of the waveform
LogicGreen Technologies Co., LTD

The rate can be calculated using the following formula:

 $f_{oc0xfpwm} = f_{sys} / (N * (1 + TOP))$

LGT8FX8D Series - Programming Manual 1.0.5

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

When a compare match occurs between TCNT0 and OCR0x, the waveform generator sets (clears) the OC0x signal. When TCNT0 is cleared At zero, the waveform generator clears (sets) the OC0x signal to generate a PWM wave. Whereby the extreme value of OCR0x will be Will produce a special PWM waveform. When OCR0x is set to 0x00, the output PWM is every (1 + TOP) count clock There is a narrow spike. When OCR0x is set to the maximum value, the output waveform is a continuous high or low level.

Phase correction PWM mode

When setting WGM0 [2: 0] = 1 or 5, the timer counter 0 enters the phase corrected PWM mode, the maximum value of the count TOP is MAX (0xFF) or OCR0A, respectively. The counter is bidirectional, incremented by BOTTOM to TOP, and then again Decrements to BOTTOM, and repeats this operation. When the count reaches TOP and BOTTOM, the counting direction is changed and the count value is TOP or BOTTOM only stay on a count clock. In increments or decrements, the count values TCNT0 and OCR0x When matching, the output compare signal OC0x will be cleared or set, depending on the setting of the compare output mode COM0x. With a single Compared to the operation, the maximum frequency available for bidirectional operation is small, but its excellent symmetry is more suitable for motor control. In phase correction PWM mode, the TOV0 flag is set when the count reaches BOTTOM. When the count reaches TOP, compare The value of the buffer is updated to the comparison value. If the interrupt is enabled, the compare buffer OCR0x can be updated in the interrupt service routine

Deposit.

The waveform of the output compare signal OC0x is obtained by setting the data direction register of the OC0x pin to output. The frequency of the waveform The rate can be calculated using the following formula:

 $f_{oc0xpcpwm} = f_{sys} / (N * TOP * 2)$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

During waveform counting, when the TCNT0 matches OCR0x, the waveform generator clears (sets) the OC0x signal. in In the process of decrementing the count, when the TCNT0 matches OCR0x, the waveform generator sets (clears) the OC0x signal. thus The extreme value of OCR0x produces a special PWM wave. When OCR0x is set to the maximum or minimum value, OC0x signal is output Will remain low or high.

In order to ensure that the output PWM wave symmetry on both sides of the minimum value, in the absence of a comparison match, there are two cases Flip OC0x signal. The first case is when the value of OCR0x changes from the maximum value 0xFF to other data. When OCR0x Is the maximum value, the count value reaches the maximum, the output of OC0x is the same as that of the previous descending order. Hold OC0x unchanged. The value of the new OCR0x will be updated (non-0xFF), the value of OC0x will remain When the ascending order counts, a compare match occurs. At this point OC0x signal is not symmetrical with the minimum value, so need to TCNT0 to reach the maximum value when the flip OC0x signal, which does not occur when the comparison match the OC0x signal flip the first situation condition. The second case is that when TCNT0 starts counting from a value higher than OCR0x, it will lose a compare match, Thus causing the occurrence of asymmetric situations. Also need to flip OC0x signal to achieve the minimum on both sides of the symmetry.

Dead time control

When the DTEN0 bit is set to "1", the function of inserting the dead time is enabled and the output waveform of OC0A and OC0B will be set to B Channel comparison output generated by the waveform based on the insertion of the set dead time, the length of the time for the DTR0 register count The number of clocks corresponding to the time value. As shown in the following figure, the dead time insertion of OC0A and OC0B is the comparison of channel B Output waveform as a reference. When COM0A and COM0B are the same as "2" or "3", OC0A's waveform polarity is the same as OC0B Waveforms are the same, when COM0A and COM0B are "2" or "3", OC0A waveform and OC0B waveform The opposite polarity.

- 78 -

Page 85

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Bottom OCR0B TOP OCR0B

Figure 1 TC0 dead time control in FPWM mode

Page 86

LGT8FX8D Series - Programming Manual 1.0.5

	Bottom	OCR0B	TOP	OCR0B	Bottom	OCR0B	TOP	OCR0B	Bottom	OCR0B	
TCNT0											PCPWM
OC0B_pre											COM0B = 3
OC0B											COM0B = 2
OC0A											COM0A = 3
OC0A											COM0A = 2
Dead Time											
OC0B_pre											COM0B = 2

- 79 -

LogicGreen Technologies Co., LTD

https://translate.googleusercontent.com/translate_f

OC0B	COM0A = 2
OC0A	СОМОЛ = 3
OC0A	СОМОА = 2

Figure 2 TC0 dead time control in PCPWM mode

When the DTEN0 bit is set to "0", the function of inserting the dead time is disabled. The output waveforms of OC0A and OC0B are the respective More than the output generated by the waveform.

High speed clock mode

In high-speed clock mode, a higher frequency clock is used as the clock source for counting to produce higher speed and higher resolution Rate of the PWM waveform. This high-frequency clock is multiplied by the output clock rc32m of the internal 32M RC oscillator produced. Therefore, before entering the high-frequency mode, you must first enable the internal 32M RC oscillator multiplier function, that is set TCKCSR register of the F2XEN bit and wait for a certain period of time until the multiplier clock signal output is stable. Then, it can be set The TC2XS0 bit of TCKCSR enables the timer counter to enter high-speed clock mode.

In this mode, the system clock is asynchronous to the high-speed clock, and some registers (see the TC0 register list) are operating

In the high-speed clock domain, therefore, when configuring and reading such registers is also asynchronous, the operation should pay attention.

There is no special requirement for non-continuous read / write operation of the register in the high-speed clock domain, and when a continuous read / write operation is performed, To wait for a system clock, follow these steps:

1) write register A;

2) wait for a system clock (NOP or operating system clock under the register);

3) Read or write to register A or B.

4) Wait for a system clock (NOP or operating system clock under register).

When reading a register in a high-speed clock domain, the register other than TCNT0 can be read directly. When the counter When counting is in progress, the value of TCNT0 changes with the high-speed clock, and the counter can be paused (set CS0 to zero) and then read The value of TCNT0.

- 80 -

Page 87

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register definition

TC0 register list					
register	address	Defaults	description		
TCCR0A *	0x44	0x00	TC0 control register A		
TCCR0B *	0x45	0x00	TC0 control register B		
TCNT0 *	0x46	0x00	TC0 count value register		
OCR0A *	0x47	0x00	TC0 output compare register A		
OCR0B *	0x48	0x00	TC0 output compare register B		
DSX0 *	0x49	0x00	TC0 Trigger Source Control Register		
DTR0 *	0x4F	0x00	TC0 dead time register		
TIMSK0	0x6E	0x00	Timer counter 0 interrupt mask register		
TIFR0	0x35	0x00	Timer counter 0 interrupt flag register		
TCKCSR	0xEC	0x00	TC clock control and status register		

[note]

The register with "*" operates on the system clock and the high-speed clock domain. When the register with "*" only works on the system Under the clock domain

Address: 0x44			Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
Name CO	OM0A1	COM0A0 CO	COM0A0 COM0B1 COM0B0 DOC0B DOC0A WGM01 WGM00							
$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \mid \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	description								
7	COM0A1	1CU Compare Match A Output Mode Control High. COM0A1 and COM0A0 together constitute the comparison output mode control COM0A [1: 0], used to control OC0A output waveform. If bit 1 or bit 2 of COM0A is set, the output compare waveform is occupied According to the OC0A pin, but the pin of the data direction register must be set to output this waveform. In different modes of operation, COM0A on the output comparison waveform control is also different, see the specific comparison Out mode control table description.								
6	COM0A0	TC0 compare match A output mode control low. COM0A0 and COM0A1 together make up compare output mode control COM0A [1: 0], used to control OC0A output waveform. If bit 1 or bit 2 of COM0A is set, the output compare waveform is occupied According to the OC0A pin, but the pin of the data direction register must be set to output this waveform. In different modes of operation, COM0A on the output comparison waveform control is also different, see the specific comparison Out mode control table description.						mparison		
5	COM0B1	TC0 compare n COM0B1 and C	natch B output	mode control hi her make up cor	gh. npare output r	node control (COM0B [1: 0]	, used to control	OC0B	

- 81 -

Page 88

LGT8FX8D	Series - Programm	ning Manual 1.0.5 LogicGreen Technologies Co., LTD
		Of the output waveform. If the 1 or 2 bits of COM0B are set, the output compare waveform is occupied
		OCOR nin, but the nin's data direction register must be set high to output this waveform. No
		With the work mode COM0B on the output comparison waveform control is also different see the specific comparison output mode
		Type control table description
		TCO compare match D cutation de control lano
		COMUBU and COMUBI together constitute the compare output mode control COMUB [1: 0], used to control
4	COM0B0	OC0B output waveform. If bit 1 or 2 of COM0B is set, the output compare waveform is occupied
		With the OC0B pin, but the pin's data direction register must be set high to output this waveform. in
		Different operating modes, COM0B on the output comparison waveform control is also different, see the specific comparison output
		Mode control table description.
		TC0 OFF Output Compare Enable Control High.
		When the DOC0B bit is set to "1", the trigger source off output compare signal OC0B is enabled. When made
3	DOC0B	When the event is triggered, the hardware automatically turns off the OC0B's waveform output.
		When the set value of the DOC0B bit is set to "0", the trigger source off output compare signal OC0B is disabled. When made
		When the event is triggered, the OC0B's waveform output is not turned off.
		TC0 OFF Output Compare Enable Control Low.
		When the DOC0A bit is set to "1", the trigger source turns off the output compare signal OC0A is enabled. When made
2	DOC0A	When the event is triggered, the hardware automatically turns off the OC0A waveform output.
		When the set value of the DOC0A bit is set to "0", the trigger source off output compare signal OC0A is disabled. When made
		When the event is triggered, the OCOA waveform output is not turned off.
		TC0 waveform generation mode control center.
1	WGM01	WGM01 and WGM00, WGM02 together form the waveform generation mode control WGM0 [2: 0], control
		Counter count mode and waveform generation mode, see the waveform generation mode table description.
		TC0 waveform generation mode control low.
0	WGM00	WGM00 and WGM01, WGM02 together form the waveform generation mode control WGM0 [2: 0], control
		Counter count mode and waveform generation mode, see the waveform generation mode table description.

TC0 control register B- TCCR0B

TCCR0B - TC0 control register B

Address: 0x45

Bit	7	6	5	4	3	2	1	0	
Name	FOC0A	FOC0B	OC0AS	DTEN0 W	GM02	CS02	CS01	CS00	
\mathbf{R} / \mathbf{W}	W	W	W / R	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	
Initial	0	0	0	0	0	0	0	0	

Bit	Name	description
		TC0 Force Output Compare A control bit.
		When operating in non-PWM mode, the "1" can be written to the forced output compare bit FOC0A.
-	FOCAL	Type to produce a comparison match. Forcing the match does not set the OCF0A flag, nor will it be overloaded or
/	FOCUA	Clear the timer, but the output pin OC0A will be updated according to the COM0A settings,
		Just like a real match.
		The return value of reading FOC0A is always zero.
6	FOC0B	TC0 Force Output Compare B control bits.

- 82 -

Page 89

LGT8FX8D Series	- Programming	g Manual 1.0.5	LogicGreen Technologies Co., LTD				
		When operating in non-PWM mode, the "1" can be written to t	to the forced output compare bit FOC0B.				
		Type to produce a comparison match. Forcing the match does a	not set the OCF0B flag, nor will it be overloaded or				
		Clear the timer, but the output pin OC0B will be updated accord	ding to COM0B settings,				
		Just like a real match.					
		The return value of reading FOC0B is always zero.					
		OC0A output port selection control bit. When the OC0AS bit i	s set to "0", the waveform of OC0A is changed from				
5	OC0AS	Pin PD6 output; when the OC0AS bit is set to "1", the wavefor	m of OC0A is shifted from pin PE4				
		Out (QFP32 package is valid).					
		TC0 dead time enable control bit.					
		When the DTEN0 bit is set to "1", the dead time is enabled. Of	C0A and OC0B are in the B-pass				
		The track is compared to the output generated by the waveform	n based on the insertion dead time, and the inserted dead time interval is determined by				
4	DTEN0	The count time corresponding to the DTR0 register is determine	ned. The OC0A output waveform is polarized by COM0 and				
		COM0B corresponds to the decision, see OC0A insert dead time	ne after the waveform polarity table.				
		When the DTEN0 bit is set to "0", the dead time insertion is dis-	sabled and the waveforms of OC0A and OC0B are				
		Each compares the output generated by the waveform.					
		TC0 waveform generation mode control high.					
3	WGM02	WGM02 and WGM00, WGM01 together form the waveform a	generation mode control WGM0 [2: 0], control				
		The counting method and the waveform generation mode of the	e counter are described in detail, and the waveform generation mode table is described in detail.				
2	CS02	TC0 clock selection control high.					
2		Used to select the clock source for timer counter 0.					
1	CS01	TC0 clock selection control bit.					
1		Used to select the clock source for timer counter 0.					
	CS00	TC0 clock selection control low.					
		Used to select the clock source for timer counter 0.					
		CS0 [2: 0]	description				
		0 No clock	source, stop counting				
		1	clk _{sys}				
0		2 clk sys / 8, 1	from prescaler				
		3 clk sys / 64,	from prescaler				
		4 clk _{sys} / 256,	from prescaler				
		5 clk sys / 1024	, from prescaler				
		6 External clock T	0 pin, falling edge trigger				
		7 External clock T	0 pin, rising edge triggered				

The following table shows the control of the output compare waveform for the non-PWM mode (ie, normal mode and CTC mode)

system.

OC0x disconnect, general-purpose IO port operation

1	Match the OC0x signal when comparing the match
2	The OC0x signal is cleared when compare match
3	The OC0x signal is set when compare match

The following table shows the control of the output compare waveform for the compare output mode in fast PWM mode.

- 83 -

Page 90

LGT8FX8D Series - Programming Manua	al 1.0.5 LogicGreen Technologies Co., LTD
COM0x [1: 0]	description
0	OC0x disconnect, general-purpose IO port operation
1	Keep it
2	The OC0x signal is cleared when the compare match is set and the OC0x signal is set when the maximum match is made
3	The OC0x signal is set when the compare match is cleared and the OC0x signal is cleared when the maximum match is reached

The following table shows the control of the output compare waveform for the compare output mode in phase correction mode.

COM0x [1:0]	description
0	OC0x disconnect, general-purpose IO port operation
1	Keep it
2	The OC0x signal is cleared when the compare match is cleared in the ascending count and set at the compare match
2	OC0x signal
2	The OC0x signal is set when the compare match is set in the ascending count. When the compare match is cleared
3	OC0x signal

The following table shows the waveform generation mode control.

WGM0 [2: 0]	Operating mode	TOP value	Update OCR0X moments	Set $\mathbf{TOV0}$ at all times
0	Normal	0xFF	immediately	MAX
1	PCPWM	0xFF	TOP	BOTTOM
2	CTC	OCR0A	immediately	MAX
3	FPWM	0xFF	TOP	MAX
4	Keep it	-	-	-
5	PCPWM	OCR0A	TOP	BOTTOM
6	Keep it	-	-	-
7	FPWM	OCR0A	TOP	TOP

DSX0 - TC0 trigger source control register

DSX0 - TC0 trigger source control register										
Address: 0	x49		Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
Name DS	X07	DSX06	DSX05	DSX04	DSX03	DSX02	DSX01	DSX00		
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		

Bit	Name	description
	DSX07	TC0 trigger source selection control enabled bit 7.
7		When the DSX07 bit is set to "1", TC1 overflows as the output signal of the compare output waveform OC0A / OC0B
		The trigger source is enabled. When the DOC0A / DOC0B bit is "1", the interrupt flag of the selected trigger source is sent
		The rising edge of the register bit will automatically turn off the OC0A / OC0B waveform output.
		When the DSX07 bit is set to "0", TC1 overflows as the output signal of the compare output waveform OC0A / OC0B
		The trigger source is disabled.

6 DSX06 TC0 Trigger Source Select Control Enable bit 6.

Page 91

LGT8FX8D Serie	es - Program	ning Manual 1.0.5 LogicGreen Technologies Co., LTD
		When the DSX06 bit is set to "1", TC2 overflows as the output signal for the compare output waveform OC0A / OC0B The trigger source is enabled. When the DOC0A / DOC0B bit is "1", the interrupt flag of the selected trigger source is sent The rising edge of the register bit will automatically turn off the OC0A / OC0B waveform output. When setting the DSX06 bit to "0", TC2 overflows as the output signal of the compare output waveform OC0A / OC0B
5	DSX05	ICO Trigger Source Select Control Enable Bit 5. When the DSX05 bit is set to "1", the pin level changes by 0 as the output signal The trigger source for OC0A / OC0B is enabled. When the DOC0A / DOC0B bit is "1", the selected trigger source The rising edge of the interrupt flag register bit will automatically turn off the waveform output of OC0A / OC0B. When the DSX05 bit is set to "0", the pin level changes by 0 as the output signal The trigger source for OC0A / OC0B is disabled.
4	DSX04	Ine figger source to OCOA / OCOB is disabled. ICO trigger source selection control enabled bit 4. When the DSX04 bit is set to "1", the external interrupt 0 is used to turn off the output compare signal waveform The trigger source for OCOA / OCOB is enabled. When the DOCOA / DOCOB bit is "1", the selected trigger source The rising edge of the interrupt flag register bit will automatically turn off the waveform output of OCOA / OCOB. When the DSX04 bit is set to "0", the external interrupt 0 is used to turn off the output compare signal waveform
3	DSX03	The trigger source for OCOA / OCOB is disabled. FCO Trigger Source Select Control Enable Bit 3. When setting the DSX03 bit to "1", the analog comparator 1 is shipped with channel 1 as the output compare The trigger source for signal waveform OCOA / OCOB is enabled. When the DOCOA / DOCOB bit is "1" The rising edge of the interrupt flag register bit will automatically turn off the waveform of OCOA / OCOB. Out. When the DSX03 bit is set to "0", the analog comparator 1 is shipped with channel 1 as the output compare
2	DSX02	The trigger source for signal waveform OC0A / OC0B is disabled. IC0 Trigger Source Select Control Enable bit 0. When the DSX02 bit is set to "1", the analog comparator 1 op amp channel 0 is used to turn off the output compare The trigger source for signal waveform OC0A / OC0B is enabled. When the DOC0A / DOC0B bit is "1" The rising edge of the interrupt flag register bit will automatically turn off the waveform of OC0A / OC0B. Out. When the DSX02 bit is set to "0", the analog comparator 1 op amp is set to 0 as the output compare
1	DSX01	The trigger source for signal waveform OCOA / OCOB is disabled. FC0 trigger source selection control enabled bit 1. When the DSX01 bit is set to "1", the analog comparator 0 op amp channel 1 is used to turn off the output compare The trigger source for signal waveform OCOA / OCOB is enabled. When the DOCOA / DOCOB bit is "1" The rising edge of the interrupt flag register bit will automatically turn off the waveform of OCOA / OCOB. Out. When setting the DSX01 bit to "0", the analog comparator 0 op amp channel 1 is used as the output compare The trigger source for signal waveform OCOA / OCOB is disklid.
0	DSX00	The trigger source for signal waveform OCOA / OCOB is disabled. FCO Trigger Source Select Control Enable bit 0. When setting the DSX00 bit to "1", the analog comparator 0 op amp channel 0 is set as the output compare The trigger source for signal waveform OCOA / OCOB is enabled. When the DOCOA / DOCOB bit is "1" The rising edge of the interrupt flag register bit will automatically turn off the waveform of OCOA / OCOB. Dut. When setting the DSX00 bit to "0", the analog comparator 0 op amp channel 0 is used as the output compare

- 85 -

Page 92

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The trigger source for signal waveform OC0A / OC0B is disabled.

The following table controls the selection of the trigger source for the waveform output.

Turn off the trigger source selection control of the OC0A / OC0B waveform output

DOC0x E	OSX0n = 1	Trigger source	description
0	-	Т	The DOC0x bit is "0" and the trigger source turns off the waveform output
		-	Can be forbidden
1	0	Analog Comparator 0 Channel 0	The rising edge of ACIF00 will turn off the OC0x waveform output
1	1	Analog Comparator 0 Channel 1	The rising edge of ACIF01 will turn off the OC0x waveform output
1	2	Analog Comparator 1 Channel 0	The rising edge of ACIF10 will turn off the OC0x waveform output
1	3	Analog Comparator 1 Channel 1	The rising edge of ACIF11 will turn off the OC0x waveform output
1	4	External interrupt 0	The rising edge of INTF0 will turn off the OC0x waveform output
1	5	Pin level change 0	The rising edge of PCIF0 will turn off the OC0x waveform output
1	6	TC2 overflow	The rising edge of TOV2 will turn off the OC0x waveform output
1	7	TC1 overflows	The rising edge of TOV1 will turn off the OC0x waveform output

note:

1) When DSX0n = 1 indicates that the nth bit of the DSX0 register is 1, each register bit can be set at the same time.

TC0 count value register - TCNT0

00		
2	1	0
00		
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$
0	0	0
	00 2 00 R / W 0	10 2 1 20 R/W R/W 0 0

Bit	Name	description
		TC0 count value register.
		Through the TCNT0 register can be directly on the counter 8 for the count value to read and write access.
		The CPU writes to the TCNT0 register will prevent the compare match from the next timer clock cycle
		Occurs even if the timer has stopped. This allows the TCNT0 register to be initialized with the value of OCR0
7:0	TCNT0	The value is consistent and does not trigger an interrupt.
		If the value written to TCNT0 equals or bypasses the OCR0 value, the compare match is lost, causing
		The correct waveform results.
		The timer stops counting when the clock source is not selected, but the CPU can still access TCNT0. CPU write count
		The device has a higher priority than zeroing or addition and subtraction.

TC0 output compare register A-OCR0A

			OCR0A - 2	TCO Output c	ompare regist	er A		
Address: 0	x47				Default: 0x0	0		
Bit	7	6	5	4	3	2	1	0
Name OC	R0A7 OCR04	A6 OCR0A5 O	CR0A4 OCR	0A3 OCR0A2	OCR0A1 OCH	R0A0		

- 86 -

Page 93

LGT8F	LGT8FX8D Series - Programming Manual 1.0.5					LogicGreen Technologies Co., LTD					
	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W		
	Initial	0	0	0	0	0	0	0	0		
	Bit	Name	description								
			TC0 output com	pare register.							
			OCR0A contain	s an 8-bit data	that is continu	ously compar-	ed with the cou	nter value TC!	VT0. Comparison		
			The match can b	e used to gene	rate an output	compare inter	rupt, or to gene	erate a wavefor	m on the OC0A pin.		
When using PWM mode, the OCR0A r			OCR0A regist	R0A register uses a double buffered register. While the normal working mode							
	7: 0 OCF	R0A	And the match clear mode, the double buffering function is disabled. Double buffering can be updated with OCR0A update								
Synchronize with				h the maximu	maximum or minimum moments of the count, thereby preventing the generation of asymmetric PWM						

Red, eliminating the interference pulse. When using the double buffering function, the CPU accesses the OCR0A buffer register when the double buffering function is disabled

CPU access is OCR0A itself.

TC0 Output compare register B- OCR0B

			<i>OCR0B</i> - T	C0 Output cor	mpare register	В					
Address: 0x48 Default: 0x00											
Bit	7	6	5	4	3	2	1	0			
Name OCR0B7 OCR0B6 OCR0B5 OCR0B4 OCR0B3 OCR0B2 OCR0B1 OCR0B0											
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}			
Initial	0	0	0	0	0	0	0	0			
Bit	Name				descriptio	n					
		TC0 Output Compare B register.									
		The OCR0B contains an 8-bit data that is continuously compared with the counter value TCNT0.									
		The compare match can be used to generate an output compare interrupt, or to generate a waveform on the OC0B pin.									
		When using PWM mode, the OCR0B register uses a double buffered register. While the ordinary work model									
7:0	OCR0B	Type and ma	tch clear mod	e, the double l	ouffering funct	ion is disabled.	Double buffer	ing can be update	ed OCR0B		
		The registers are synchronized with the count maximum or minimum moments to prevent asymmetry									
		PWM pulse,	eliminating th	ne interference	pulse.						
		When using	the double bu	ffering functio	on, the CPU acc	cesses the OCR	0B buffer regi	ster, which disable	es the double buffering function		
		When the Cl	PU accesses th	ne OCR0B itse	elf.						

TC0 interrupt mask register - TIMSK0

			<i>TIMSK0</i> - T	C0 interrupt n	nask register			
Address:	0x6E				Default: 0x0	00		
Bit	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	OCIE0B	OCIE0A TO	DIE0
$\mathbf{R} \ / \ \mathbf{W}$	-	-	-	-	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}
Initial	0	0	0	0	0	0	0	0
Bit	Name				description			

- 87 -

Page 94

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

7:3		Keep it.
		TC0 Output Compare B Match Interrupt Enable bit.
2	OCIE0B	When the OCLEOB bit is "1" and the global interrupt is set, the ICO output compare B matches the interrupt enable, when
		When the OCIEOB bit is "0" the TCO output compare B match interrupt is disabled
		TC0 Output Compare A Match Interrupt Enable bit.
		When the OCIE0A bit is "1" and the global interrupt is set, the TC0 output compares the A match interrupt enable. when
1	OCIE0A	When a compare match occurs, that is, when the OCF0A bit in TIFR0 is set, an interrupt is generated.
		When the OCIE0A bit is "0", the TC0 output compare A match interrupt is disabled.
		TC0 overflow interrupt enable bit.
0	TOIE0	When the TOIE0 bit is "1" and the global interrupt is set, the TC0 overflow interrupt is enabled. When TC0 overflows,
		When the TOV0 bit in TIFR is set, the interrupt is generated.
	When the TOIE0 bit is "0", the TC0 overflow interrupt is disabled.	

TC0 Interrupt Flag Register - TIFR0

	TIFR0 - TC0 interrupt flag register
Address: 0x35	Default: 0x00

Bit 7 6 5 4 3 2 1 0

https://translate.googleusercontent.com/translate_f

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Name	OC0A	OC0B	-	-	-	OCF0B	OCF0A TO	0V0		
\mathbf{R} / \mathbf{W}	R / O	R / O	-	-	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name				description	1				
		Output compar	e waveform	signal OC0A.						
		Output compar	e waveform	signal OC0A, s	software read	able but not writa	ible. The softw	vare can be enabled in	the OC0A letter	
7	OC0A	Before outputt	ing to its corr	esponding IO J	pin, you can f	irst read the valu	e of the OC0A	bit to get the output to	be output	
,	00011	Compare the p	olarity of the	waveform sigr	nal and chang	e it by configurir	ng the COM04	A bit and setting the FC	OC0A bit	
		Its polarity, to	avoid the OC	0A signal outp	ut to its corre	sponding IO pin	after the exce	55		
		Interference pu	ilse.							
		Output compare waveform signal OC0B.								
		Output compare waveform signal OC0B, software readable but not writable. The software can be enabled in OC0B messages								
6	OCOR	Before the output to its corresponding IO pin, you can first read the value of the OC0B bit to get the output								
0	осов	Compare the polarity of the waveform signal and change it by configuring the COM0B bit and setting the FOC0B bit								
		Its polarity, to avoid the OC0B signal output to its corresponding IO pin after the excess								
		Interference pu	ilse.							
5:3		Keep it								
		TC0 Output Co	ompare B ma	tch flag.						
		When TCNT0	is equal to O	CR0B, the corr	parison unit	gives the match s	signal and sets	the compare flag		
2	OCF0B	OCF0B. If the	output comp	are B interrupt	enable OCIE	0B is "1" and the	global interru	ipt flag is set		
		Bit, an output of	compare B in	terrupt is gener	rated. OCF0B	will be cleared a	utomatically	when this interrupt serv	vice routine is executed	
		Zero, or "1" or	the OCF0B	bit can also be	cleared.					
		TC0 output co	mpare A mat	ch flag.						
1	OCF0A	When TCNT0	is equal to O	CR0A, the con	nparison unit	gives the match s	signal and sets	the compare flag		

- 88 -

Page 95

LGT8FX8D Series - Programming Manual 1.0.5

0

LogicGreen Technologies Co., LTD

	OCF0A. If the output compare A interrupt is enabled, OCIE0A is set to "1" and the global interrupt flag is set
	Bit, an output compare A interrupt is generated. OCF0A will be cleared automatically when this interrupt service routine is executed
	Zero, or write "1" to the OCF0A bit. This bit can also be cleared.
	TC0 overflow flag.
	When the counter overflows, set the overflow flag TOV0. If the overflow interrupt is enabled, TOIE0
1000	Is set to "1" and the global interrupt flag is set, an overflow interrupt is generated. Execute this interrupt service routine
	TOV0 will be cleared automatically, or "1" for TOV0 bits can also be cleared.

DTR0 - TC0 dead time control register

			$DTR\theta - \mathrm{TC}\theta$	dead time con	trol register				
Address: 0x	4F				Default: 0x0	0			
Bit	7	6	5	4	3	2	1	0	
Name	DTR07	DTR06	DTR05	DTR04	DTR03	DTR02	DTR01 DT	rroo	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	R / W	
Initial	0	0	0	0	0	0	0	0	
Bit 7: 0	Name DTR0	TC0 dead tir When the D	ne register. FEN0 bit of th	e TCCR0B reg	description	e inserted dead	time control is	enabled.	
		time.	ie of the insert	ion is determin	ied by DTR0, a	and the length o	of the time is th	e corresponding	t DIRU count clock

\mathbf{TCKCSR} - \mathbf{TC} clock control and status register

TCKSCR - TC clock control and status register

Address: 0xEC

Default: 0x00

LogicGreen Technologies Co., LTD

Bit	7	6	5	4	3	2	1	0	
Name	-	F2XEN	TC2XF1 T	C2XF0	-	AFCKS	TC2XS1 TC	C2XS0	
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	R	R	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	
Initial	0	0	0	0	0	0	0	0	
Bit	Name				descriptio	n			
7	-	Keep it							
		RC 32M mu	ltiplier output	enable control	l bit.				
		When the F2	XEN bit is se	t to "1", the m	ultiplier output	t of the 32M RC	Coscillator is en	nabled and out	puts 64M
6	F2XEN	High speed of	clock.						
		When the F2	XEN bit is se	t to "1", the m	ultiplier output	t of the 32M RC	coscillator is d	isabled and car	1 not be output
		64M high sp	eed clock.						
-		TC high spe	ed clock mode	flag bit 1.					
5	1C2XF1	See Timer 1	Register Desc	ription.					
		TC high spe	ed clock mode	flag 0.					
4	TC2XF0	When readir	g the TC2XF) bit as "1", it	indicates that t	he timer counte	r 0 is operating	g in high-speed	clock mode,
		"0" indicates	that the timer	counter 0 is o	perating in sys	stem clock mod	e.		

- 89 -

Page 96

LGT8FX8D Series - Programming Manual 1.0.5

3	-	Keep it.
2	AFCKS A	C0 / 1 filter clock selection, please refer to OP / AC section for detailed definition
,		TC high speed clock mode selection control bit 1.
1	102881	See Timer 1 Register Description.
		TC high speed clock mode selection control bit 0.
0	TC2XS0	When the TC2XS0 bit is set to "1", the timer counter 0 is selected to operate in the high-speed clock mode.
		When the TC2XS0 bit is set to "0", the timer counter 0 is selected to operate in the system clock mode.

- 90 -

Page 97

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

16 -bit timer / counter 1

True 16-bit design allows 16-bit PWM

- 2 independent output compare units
- Double buffered output compare register
- 1 input capture unit
- Input capture noise suppressor
- The counter is automatically cleared when the match matches and is automatically loaded
- Phase-corrected PWM without interference pulse
- Variable PWM cycle
- Frequency generator
- External event counter
- 4 independent interrupt sources
- PWM that supports dead time control
- Four optional trigger sources automatically turn off the PWM output

High-speed, high-resolution (500KHZ @ 7BIT) PWM in high-speed clock mode

Overview

TCCR1A	TCCR1B	DTR1		TIMSK	TIFR	
Clock Prescaler		rcm2x	clkio		Clock Generator	
	Edge De	tect	Sync		Pin Mux	T1
					Counter	
					Control	
Counter		TCNT1				
	ICR1			400	Input Capture	
	Edge Detect	Noise Canceler		neo	Pin Mux	ICP1
	OCR1A			Wave	form Generator	
Comp	pare	Dead Time Insert			Pin Mux	OC1A
OCR	1B				Control	
Compare		Dead Time Insert			Pin Mux	OC1B

TC1 structure diagram

- 91 -

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

TC1 is a universal 16-bit timer counter module that supports PWM output and can accurately generate waveforms. TC1 package Includes 1 16-bit counter, waveform generation mode control unit, 2 independent output compare units and 1 input capture list yuan. At the same time, TC1 can be shared with TC0 10-bit prescaler, you can also use the 10-bit prescaler. Prescaler On the system clock clkio or high speed clock rcm2x (internal 32M RC oscillator output clock rc32m 2 times) Divide to produce the count clock Clkt1. The waveform generation mode control unit controls the operation mode of the counter and the comparison output wave The shape of the generation. Depending on the operating mode, the counter is cleared for each count clock Clkt1, plus one or minus For. Clkt1 can be generated by an internal clock source or an external clock source. When the counter count value TCNT1 reaches the maximum value (etc.) At maximum 0xFFFF or fixed value or output compare register OCR1A or input capture register ICR1, defined as TOP, When the maximum value is MAX for the difference), the counter is cleared or decremented. When the counter counts the value TCNT1 When the minimum value (equal to 0x0000, defined as BOTTOM) is reached, the counter is incremented. When the counter counts When the value TCNT1 reaches OCR1A or OCR1B, it is also called when the compare match is cleared or the output compare signal is set OC1A or OC1B, to generate PWM waveforms. When the dead time is enabled, the set dead time (DTR1 is registered The number of clocks corresponding to the device) will be inserted into the generated PWM waveform. When the input capture function is on, count The ICR1 register will record the count value of the capture signal during the trigger period. The software is available Clear the COM1A / COM1B bit to zero to turn off the OC1A / OC1B waveform output, or set the corresponding trigger source, when touch When the event occurs, the hardware automatically clears the COM1A / COM1B bit to turn off the OC1A / OC1B waveform output.

The counting clock can be generated by an internal or external clock source. The clock source selection and frequency selection are set by the TCCR1B register The CS1 bits of the device are controlled, as described in the TC0 and TC1 prescaler sections.

The length of the counter is 16 bits and supports bidirectional counting. The waveform generation mode is the operating mode of the counter located by TCCR1A And the WGM1 bit of the TCCR1B register. According to the different operating modes, the counter for each count clock Clkt1 To achieve zero, plus one or minus one operation. When the count overflows, the count overflow flag TOV1 is located in the TIFR1 register Bit will be set. TC1 count overflow interrupt can be generated when interrupt is enabled.

The output compare unit compares the count value TCNT1 with the values of the output compare registers OCR1A and OCR1B. When TCNT1 Equal to OCR1A or OCR1B is called a compare match, the output comparison flag OCF1A in the TIFR1 register or The OCF1B bit is set. TC1 output compare match interrupt can be generated when interrupt is enabled. Note that in the PWM operating mode, the OCR1A and OCR1B registers are double buffered registers. In normal mode And CTC mode, the double buffering function is disabled. When the count reaches the maximum or minimum value, the value in the buffer register is synchronized New to compare register OCR1A and OCR1B. See the description of the working mode section.

The waveform generator generates and controls the output mode control according to the waveform generation mode and uses the compare match and the count overflow to generate Output the comparison waveform signals OC1A and OC1B. The specific way of generating is described in the working mode and register section description. To output When comparing the waveform signals OC1A and OC1B to the corresponding pins, it is also necessary to set the data direction register of this pin to Output.

Operating mode

Timing counter 1 has six different modes of operation, including normal mode (Normal), compare match clear (CTC) Mode, fast pulse width modulation (FPWM) mode, phase corrected pulse width modulation (PCPWM) mode, phase frequency Rate correction pulse width modulation (PFCPWM) mode, and input capture (ICP) mode. The waveform is generated by the mode control bit WGM1 [3: 0] to choose. The six modes are described in detail below. Since there are two separate output comparison units, respectively "A" and "B", with the lowercase "x" to represent the two output compare cell channels.

- 92 -

Normal mode

The normal mode is the simplest mode of operation for the timer counter. The waveform generation mode control bit, WGM1 [3: 0] = 0, The maximum value of the TOP is MAX (0xFFFF). In this mode, the count mode increments by one for each count clock, When the counter reaches the TOP overflow, it returns to BOTTOM to restart. The same value as the count value TCNT1 becomes zero Set the timer counter overflow flag TOV1 in the count clock. The TOV1 flag in this mode is like the 17th bit, only Will only be set to not be cleared. The overflow interrupt service routine automatically clears the TOV1 flag, which the software can use to improve it Timing counter resolution. There is no special case in normal mode to consider, you can always write a new count value.

The waveform of the output compare signal OC1x can be obtained by setting the data direction register of the OC1x pin to be output. When COM1x = 1, The OC1x signal is flipped when a compare match occurs. The frequency of the waveform in this case can be calculated using the following formula:

 $f_{oc1xnormal} = f_{sys} / (2 * N * 65536)$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

The output compare unit can be used to generate interrupts, but interrupts are not recommended in normal mode, which takes too much CPU time.

CTC mode

When setting WGM1 [3: 0] = 4 or 12, timer counter 1 enters CTC mode. When WGM1 [3] = 0, the most count The large value TOP is OCR1A, and when WGM1 [3] = 1, the maximum value TOP is ICR1. The following is the WGM1 [3: 0] = 4 for Example To describe the CTC mode In this mode, the count mode is incremented by one for each count clock. When the counter value The counter is cleared when TCNT1 is equal to TOP. This mode allows the user to easily control the frequency of the compare match output, Also simplifies the operation of external event counting.

When the counter reaches TOP, the output compare match flag OCF1 is set and the corresponding interrupt enable is set Off. The OCR1A register can be updated in the interrupt service routine. In this mode OCR1A does not use double buffering in The counter should be careful when updating the maximum value to near minimum with no prescaler or very low prescaler operation. Such as When the value of the write OCR1A is less than the current TCNT1 value, the counter will lose a compare match. In the next comparison Before the match occurs, the counter has to count to MAX, and then count from BOTTOM to OCR1A. And general The TOV1 flag is set in the count clock with the count value returned to 0x0.

The waveform of the output compare signal OC1x can be obtained by setting the data direction register of the OC1x pin to be output. The frequency of the waveform The rate can be calculated using the following formula:

 $f_{oclxctc} = f_{sys} / (2 * N * (1 + OCR1A))$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024). As can be seen from the formula, when the set OCR1A is 0x0 and no prescaler, you can get the maximum frequency $f_{sys}/2$ output Waveform.

When WGM1 [3: 0] = 12 is similar to WGM1 [3: 0] = 4, it is only necessary to replace ICCR1 with OCR1A.

- 93 -

Page 100

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Fast PWM mode

When the WGM1 [3: 0] = 5, 6, 7, 14 or 15 is set, the timer counter 1 enters the fast PWM mode with the largest count The values TOP are 0xFF, 0x1FF, 0x3FF, ICR1, or OCR1A, respectively, and can be used to generate high frequency PWM waveforms. fast The PWM mode differs from other PWM modes in that it is a one-way operation. The counter is returned from the BOTTOM to the TOP To BOTTOM to count again. When the count value TCNT1 reaches TOP or BOTTOM, the output compare signal OC1x will be Set or clear, depending on the setting of the compare output mode COM1. See the register description for details. As a result of one-way operation,

The operating frequency of the fast PWM mode is twice the phase-corrected PWM mode using bidirectional operation. High frequency characteristics make fast The speed PWM mode is ideal for power regulation, rectification, and DAC applications. High frequency signals can be reduced by external components (inductive power) Capacity, etc.) size, thereby reducing system costs.

When the count reaches TOP, the timer counter overflow flag TOV1 will be set and the compare buffer value will be updated to Compare values. If the interrupt is enabled, the OCR1A register can be updated in the interrupt service routine.

The waveform of the output compare signal OC1x can be obtained by setting the data direction register of the OC1x pin to be output. The frequency of the waveform The rate can be calculated using the following formula:

 $f_{oc1xfpwm} = f_{sys} \, / \, (N \, \ast \, (1 + TOP))$ Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

When TCNT1 and OCR1x compare match, the waveform generator sets (clears) the OC1x signal. When TCNT1 is cleared At zero, the waveform generator clears (sets) the OC1x signal to generate a PWM wave. Whereby the extreme value of OCR1x will be Will produce a special PWM waveform. When OCR1x is set to 0x00, the output PWM is every (1 + TOP) count clock There is a narrow spike. When OCR1x is set to TOP, the output waveform is a continuous high or low level. If you use OCR1A as TOP and set COM1A = 1, the output compare signal OC1A will generate a duty cycle of 50% of the PWM wave.

Phase correction PWM mode

When setting WGM0 [3: 0] = 1, 2, 3, 10 or 11, the timer counter 1 enters the phase correction PWM mode. The maximum value of the number TOP is 0xFF, 0x1FF, 0x3FF, ICR1 or OCR1A. The counter is operated in two directions by BOTTOM Increment to TOP, and then decrement it to BOTTOM, and repeat this operation. The count is changed when the count reaches TOP and BOTTOM Number of directions, the count value in TOP or BOTTOM only stay a count clock. In the process of increment or decrement, count When the value TCNT1 matches OCR1x, the output compare signal OC1x will be cleared or set, depending on the compare output mode COM1 settings. Compared with one-way operation, the maximum frequency available for bi-directional operation is smaller, but its excellent symmetry is more Combined with motor control.

In phase correction PWM mode, the TOV1 flag is set when the count reaches BOTTOM. When the count reaches TOP, compare The value of the buffer is updated to the comparison value. If the interrupt is enabled, the compare buffer OCR1x can be updated in the interrupt service routine Device.

The output compare signal OC1x waveform can be obtained by setting the data direction register of the OC1x pin to output. The frequency of the waveform can be Use the following formula to calculate:

 $f_{oclxcpcpwm} = f_{sys} / (N * TOP * 2)$ Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

- 94 -

Page 101

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

During the up-counting process, the waveform generator clears (sets) the OC1x signal when TCNT1 matches OCR1x. in In the process of decrementing the count, when the TCNT1 matches OCR1x, the waveform generator sets (clears) the OC1x signal. thus The extreme value of OCR1x will produce a special PWM wave. When the OCR1x is set to TOP or BOTTOM, the OC1x signal is output Will remain low or high. If OCR1A is used as TOP and COM1A = 1 is set, the compare signal OC1A is output Will produce a duty cycle of 50% of the PWM wave.

In order to ensure that the output PWM wave symmetry on both sides of the BOTTOM, in the absence of a comparison match, there are two cases Will flip the OC1x signal. The first case is when the value of OCR1x changes from TOP to other data. When OCR1x is TOP, when the count value reaches TOP, the output of OC1x is the same as that of the previous descending order, that is, the OC1x constant. The value of the new OCR1x (not TOP) is updated and the OC1x value remains until the ascending order Count when the match occurs and flip. The OC1x signal is not centered at the minimum, so it needs to be in TCNT1 When the maximum value is reversed, the OC1x signal is flipped, which is the first case when the OC1x signal is flipped without a compare match. second The case is that when TCNT1 starts counting from a value higher than OCR1x, it will lose a compare match, causing The generation of asymmetric situations. Also need to flip OC1x signal to achieve the minimum on both sides of the symmetry.

Phase frequency correction PWM mode

When setting WGM0 [3: 0] = 8 or 9, the timer counter 1 enters the phase frequency correction PWM mode, counting the most The large value TOP is ICR1 or OCR1A respectively. The counter is bi-directional, incremented by BOTTOM to TOP, and then passed Reduced to BOTTOM, and repeat this operation. When the count reaches TOP and BOTTOM, the counting direction is changed and the count value is TOP Or BOTTOM only stay on a count clock. In the process of increment or decrement, the count value TCNT1 matches OCR1x , The output compare signal OC1x will be cleared or set, depending on the setting of the compare output mode COM1. With one-way operation The maximum frequency available for bi-directional operation is smaller, but its excellent symmetry is more suitable for motor control.

Phase frequency correction In PWM mode, the TOV1 flag is set when the count reaches BOTTOM, and the compare buffer Value is updated to the comparison value, the time for updating the comparison value is the phase frequency correction PWM mode and the phase correction PWM mode is the most Big difference. If the interrupt is enabled, the compare buffer OCR1x register can be updated in the interrupt service routine. When the CPU changes When the TOP value is ORC1A or ICR1, it is necessary to ensure that the new TOP value is not less than the TOP value that is already in use. The comparison match will not happen again.

The output compare signal OC1x waveform can be obtained by setting the data direction register of the OC1x pin to output. The frequency of the waveform can be Use the following formula to calculate:

 $f_{oclxcpfcpwm} = f_{sys} / (N * TOP * 2)$ Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

During the up-counting process, the waveform generator clears (sets) the OC1x signal when TCNT1 matches OCR1x. in In the process of decrementing the count, when the TCNT1 matches OCR1x, the waveform generator sets (clears) the OC1x signal. thus The extreme value of OCR1x will produce a special PWM wave. When the OCR1x is set to TOP or BOTTOM, the OC1x signal is output Will remain low or high. If OCR1A is used as TOP and COM1A = 1 is set, the compare signal OC1A is output Will produce a duty cycle of 50% of the PWM wave.

Since the OCR1x register is updated at the BOTTOM time, the TOP value is on both sides in ascending and descending order. Kind of symmetry waveforms where both the frequency and the phase are correct.

When using the fixed TOP value, it is best to use the ICR1 register as the TOP value, that is, set WGM1 [3: 0] = 8, then OCR1A

- 95 -

Page 102

LGT8FX8D Series - Programming Manual 1.0.5

The register is only used to generate the PWM output. If you want to generate frequency changes in the PWM wave, you must change the TOP value, OCR1A double buffering feature will be more suitable for this application.

LogicGreen Technologies Co., LTD

Enter the capture mode

The input capture is used to capture an external event and give it a time stamp to indicate when the event occurred, The counting mode is performed, but the waveform generation mode using the ICR1 value as the count TOP value is to be removed.

Trigger signals for external events are entered by pin ICP1 and can also be implemented by analog comparator units. When pin ICP1 The logic level changes, or the analog ACO level of the analog comparator changes, and this level change is lost Captured by the capture unit, the input capture is triggered, then the 16-bit count value TCNT1 data is copied to the input capture Register ICR1, and input capture flag ICF1 is set. If ICIE1 bit is "1", input capture flag will generate input capture Catch interrupted.

The input capture is set by setting the analog compare control with the analog compare input control bit ACIC of the status register ACSR Capture the source ICP1 or ACO. It should be noted that changing the trigger source may cause an input capture, so change the touch A clear operation must be performed on ICF1 to avoid erroneous results.

The input capture signal is passed to an edge detector via an optional noise suppressor, and the control bit is selected according to the input capture ICES1 configuration, to see whether the detected edge to meet the trigger conditions. The noise suppressor is a simple digital filter, right The input signal is sampled four times, and the output is fed to the edge detector only when the four samples are equal. Noise suppression The device is enabled or disabled by the ICNC1 bit of the TCCR1B register.

When the input capture function is used, the ICR1 register value should be read as early as possible when ICF1 is set, since the next time

The value of ICR1 will be updated after the capture event occurs. It is recommended to enable the input capture interrupt in any input capture mode , It is not recommended to change the count TOP value during operation.

The input capture time stamp can be used to calculate the frequency, duty cycle and other characteristics of the signal, as well as to trigger the event creation date Mind When measuring the duty cycle of an external signal, it is required to change the trigger edge after each capture. Therefore, after reading the ICR1 value, Quickly change the edge of the triggered signal.

Dead time control

When the DTEN1 bit is set to "1", the function of inserting the dead time is enabled and the output waveform of OC1A and OC1B will be B channel comparison output generated by the waveform based on the insertion of the set dead time, the length of the time for the DTR1 register The number of clocks corresponding to the time value. As shown in the following figure, the dead time insertion of OC1A and OC1B is the ratio of channel B Compared to the output waveform as a reference. When COM1A and COM1B are the same as "2" or "3", OC1A waveform polarity and OC1B Of the waveform polarity is the same, when COM1A and COM1B are "2" or "3", OC1A waveform and OC1B wave The opposite polarity.

- 96 -

Page 103

LogicGreen Technologies Co., LTD LGT8FX8D Series - Programming Manual 1.0.5 OCR1B OCR1B тор TOP TCNTI FPWM OC1B_pn COM1B = 3 OC1B COM1B = 3 OCIA COMIA = 2 OCIA COM1A = 3 Dead Time OC1B_pn COM1B = 2 COM1B = 2 OCIB COM1A = 3 OCIA OCIA COM1A = 2

Figure 3 TC1 dead time control in FPWM mode

	Bottom	OCR1B	TOP	OCR1B Bottom	OCR1B	TOP	OCR1B	Bottom	OCR1B	
TCNT1										PCPWM
C1B_pre										COM1B = 3
OC1B										COM1B = 2
OCIA										COM1A = 3

OCI

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

- 97 -

Page 104

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

When the DTEN1 bit is set to "0", the function of inserting dead time is disabled. The output waveform of OC1A and OC1B is the ratio More than the output generated by the waveform.

High speed counting mode

In high-speed clock mode, a higher frequency clock is used as the counting clock source to generate higher speed and higher Resolution of the PWM waveform. This high-frequency clock is performed by multiplying the output clock rc32m of the internal 32M RC oscillator by 2 times To produce. Therefore, before entering the high-frequency mode, you must first enable the internal 32M RC oscillator multiplier function, that is set TCKCSR register of the F2XEN bit and wait for a certain period of time until the multiplier clock signal output is stable. Then, it can be set The TC2XS1 bit of TCKCSR enables the timer counter to enter high-speed clock mode.

In this mode, the system clock is asynchronous to the high-speed clock, and some registers (see the TC1 register list) are operating In the high-speed clock domain, therefore, when configuring and reading such registers is also asynchronous, the operation should pay attention.

There is no special requirement for non-sequential read and write operations on registers in high-speed clock domains, and for continuous read and write operations To wait for a system clock, follow these steps:

5) write register A;

6) wait for a system clock (NOP or operating system clock under the register);

7) Read or write to register A or B.

8) Wait for a system clock (NOP or register under operating system clock).

When a register is read in a high-speed clock domain, a register with a width of 8 bits can be read directly and 16 bits are read Register value (OCR1A, OCR1B, ICR1, TCNT1), the value of the lower register is read first, waiting for a system clock , Then read the value of the high register, and read the value of TCNT1, when the counter is still counting, TCNT1 Value will change with the high-speed clock, you can pause the counter (set CS1 to zero) and then read the value of TCNT1.

When reading OCR1A, OCR1B and ICR1, follow these steps:
1) Read OCR1AL / OCR1BL / ICR1L;
2) wait for a system clock (NOP);
3) Read OCR1AH / OCR1BH / ICR1H.

When reading TCNT1, follow these steps:
1) set CS1 to zero;
2) wait for a system clock (NOP);
3) read the value of TCNT1L;
4) wait for a system clock (NOP);
Read the value of TCNT1H.

- 98 -

Page 105

LGT8FX8D Series - Programming Manual 1.0.5

Register definition

LogicGreen Technologies Co., LTD

		TC1 register 1	ist
register	address	Defaults	description
TCCR1A *	0x80	0x00	TC1 control register A
TCCR1B *	0x81	0x00	TC1 control register B
TCCR1C *	0x82	0x00	TC1 control register C
DSX1	0x83	0x00	TC1 Trigger Source Control Register
TCNT1L *	0x84	0x00	TC1 count value register low byte
TCNT1H *	0x85	0x00	TC1 count register high byte
ICR1L *	0x86	0x00	TC1 input capture register low byte
ICR1H *	0x87	0x00	TC1 input capture register high byte
OCR1AL *	0x88	0x00	TC1 Output compare register A low byte
OCR1AH *	0x89	0x00	TC1 Output compare register A high byte
OCR1BL *	0x8A	0x00	TC1 Output compare register B low byte
OCR1BH *	0x8B	0x00	TC1 Output compare register B high byte
DTR1 *	0x8C	0x00	TC1 dead time control register
TIMSK1	0x6F	0x00	The timer counter interrupts the mask register
TIFR1	0x36	0x00	Timer counter interrupt flag register
TCKCSR1	0xEC	0x00	TC1 clock control status register

[note]

The registers with "*" work in the system clock and the high-speed clock domain, and the registers without "*" work only in the system Under the clock domain.

TCCR1A -TC1 control register A

			TCCR1A	- TC1 control re	gister A						
Address	:: 0x80				Default: 0x	:00					
Bit	7	6	5	4	3	2	1	0			
Name C	COM1A1 COM	1A0 COM1B1	COM1B0				WGM11 W	GM10			
$\mathbf{R} \ / \ \mathbf{W}$	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	-	-	\mathbf{R} / \mathbf{W}	R / W			
Initial	0	0	0	0	0	0	0	0			
Bit	Name	description									
		Compare ma	tch output A m	ode control high	1.						
		COM1A1 an	d COM1A0 fo	rm COM1A [1:	0] to control	the output co	ompare wavefor	m OC1A. in case	3		
-		COM1A 1 o	COM1A 1 or 2 are set, the output waveform occupies the OC1A pin, but the								
/	COMIAI	The pin's dat	The pin's data direction register must be set high to output this waveform. In different working modes,								
		COM1A on	the output com	parison wavefor	m control is a	also different	, see the specifi	ic comparison ou	tput mode control ta	able description	
		Described.									
,	0010140	Compare ma	tch output A m	ode control low							
0	COMIA0	COM1A1 an	d COM1A0 fo	rm COM1A [1:	0] to control	the output co	ompare wavefor	m OC1A. in case	e		

Page 106

LGT8FX8D S	eries - Programı	ing Manual 1.0.5 LogicGreen Technologies Co., LTD
		COM1A 1 or 2 are set, the output waveform occupies the OC1A pin, but the
		The pin's data direction register must be set high to output this waveform. In different working modes,
		COM1A on the output comparison waveform control is also different, see the specific comparison output mode control table description
		Described.
		Compare match output B mode control high.
		COM1B1 and COM1B0 form COM1B [1: 0] to control the output compare waveform OC1B. in case
		COM1B 1 or 2 are set, the output compare waveform occupies the OC1B pin, but the
5	COM1B1	The pin's data direction register must be set high to output this waveform. In different working modes,
		COM1B on the output comparison waveform control is also different, see the specific comparison output mode control table
		Described.
		Compare match output B mode control low.
		COM1B1 and COM1B0 form COM1B [1: 0] to control the output compare waveform OC1B. in case
		COM1B 1 or 2 are set, the output compare waveform occupies the OC1B pin, but the
4	COM1B0	The pin's data direction register must be set high to output this waveform. In different working modes,
		COM1B on the output comparison waveform control is also different, see the specific comparison output mode control table
		Described.
3:2	-	Keep it.
1	WGM11	Waveform generation mode control times low.
		WGM11 and WGM13, WGM12, WGM10 together constitute the waveform generation mode control
		WGM1 [3: 0], control counter count mode and waveform generation mode, see the waveform generation model
		Formula Description.
0	WGM10	The waveform generation mode controls the least significant bit.
		WGM10 and WGM13, WGM12, WGM11 together constitute the waveform generation mode control
		WGM1 [3: 0], control counter count mode and waveform generation mode, see the waveform generation model
		Formula Description.

The following table shows the non-PWM mode (ie, normal mode and CTC mode), compare the output mode to the output compare waveform control.

COM1x [1: 0]	description
0	OC1x disconnect, general IO port operation
1	Compare the OC1x signal when matching
2	The OC1x signal is cleared when compare match
3	Set OC1x signal when compare match

The following table shows the control of the output compare waveform for the compare output mode in fast PWM mode.

COM1x [1: 0]	description
0	OC1x disconnect, general IO port operation
1	When WGM1 is 15: The OC1A signal is flipped when compare match, OC1B is off
1	When WGM1 is other value: OC1x is disconnected, general purpose IO port operation
2	The OC1x signal is cleared when the compare match is set and the OC1x signal is set when the maximum match is made
3	The OC1x signal is set when the compare match is cleared and the OC1x signal is cleared when the maximum match is made

The following table shows the control of the output compare waveform for the compare output mode in phase correction mode.

COM1x [1: 0]	description	
0	OC1x disconnect, general IO port operation	
	- 100 -	

Page 107

LGT8FX8D Series - Programming Manual 1.0.5					
1	When WGM1 is 9 or 11: OC1A signal is flipped when				

LogicGreen Technologies Co., LTD

hen compare match, OC1B is off

When WGM1 is other value: OC1x is disconnected, general purpose IO port operation

Ascending Count Compare Match Clear OC1x Signal, Compare Descending Compare Count Set OC1x Signal

2

3

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Ascending Count Compare Match Set OC1x Signal, Compare Descending Compare Descending Cleared OC1x Signal

TCCR1	TCCR1B -TC1 control register B								
			TCCR1B	- TC1 Control	Register B				
Address	: 0x81				Default:	0x00			
Bit	7	6	5	4	3	2	1	0	
Name	ICNC1	ICES1	-	WGM13 W	GM12	CS12	CS11	CS10	
R / W	R / W	R / W	-	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	
Bit	Name	description							
		The input capture n	oise suppre	essor enables th	e control bit.				
		When the ICNC1 b	it is set to "	1", the input ca	apture noise s	uppressor is en	abled, and the	e external pin ICP1	
7	ICNCI	Of the input is filter	red, the inp	ut signal is vali	id when four o	consecutive sar	nples are equa	al, which makes the i	nput
/	ICINCI	The capture was de	layed by fo	ur clock cycles	š.				
		When the ICNC1 b	it is set to "	0", the input ca	apture noise s	uppressor is dis	sabled, and th	e external pin ICP1	
		The input is directly	y valid.						
		The input capture to	rigger edge	selects the con	trol bit.				
		When the ICES1 bit is set to "1", the rising edge of the selection level triggers the input capture; when ICES1 is set							
6	ICES1	When bit is "0", the falling edge of the selection level triggers the input capture.							
		When an event is captured, the counter value is copied to the ICR1 register and the input is set							
		Capture logo ICF1.	If the inter	rupt is enabled	, an input cap	ture interrupt i	s generated.		
5	-	Keep it.							
		Waveform Generati	ion Mode C	Control High.					
4	WGM13	WGM13 and WGM12, WGM11, WGM10 together constitute the waveform generation mode control							
·		WGM1 [3: 0], control counter count mode and waveform generation mode, see the waveform generation mode							ode
		Table description.							
		Waveform generation	on mode co	ontrol times hig	h.				
3	WGM12	WGM12 and WGM	113, WGM	11, WGM10 to	gether constit	ute the wavefo	rm generation	n mode control	
		WGM1 [3: 0], cont	rol counter	count mode ar	id waveform g	generation mod	le, see the way	veform generation m	ode
		Table description.							
2	CS12	Clock select contro	l high. Use	d to select the o	clock source f	or timer counte	er 1.		
1	CS11	Clock selection con	trol bit. Us	ed to select the	clock source	for timer coun	ter 1.		
0	CS10	Clock select contro	l low.						
		Used to select the c	lock source	e for timer cour	nter 1.				
		CS	1 [2: 0]			des	scription		
			0			No clock sour	rce, stop coun	ting	
			1			clk	sys		
			2			clk sys / 8, from	prescaler		

- 101 -

Page 108

LGT8FX8D Series - Programming Manual 1.0.5		LogicGreen Technologies Co., LTD		
:	3	clk sys / 64, from prescaler		
	4	clk sys / 256, from prescaler		
	5	clk sys / 1024, from prescaler		
	6	External clock T1 pin, falling edge trigger		
	7	External clock T1 pin, rising edge triggered		

The following table shows the waveform generation mode control.

WGM1 [3: 0] w	orking mode	TOP value	Update the time of TO	CR0 when the OCR0 is updated
0	Normal	0xFFFF	immediately	MAX
1	8 bit PCPWM	0x00FF	TOP	BOTTOM
2	9 bit PCPWM	0x01FF	ТОР	BOTTOM
1 2	8 bit PCPWM 9 bit PCPWM	0x00FF 0x01FF	ТОР ТОР	BOTTOM BOTTOM

https://translate.googleusercontent.com/translate_f

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

3	10 bit PCPWM	0x03FF	TOP	BOTTOM
4	CTC	OCR1A	immediately	MAX
5	8-bit FPWM	0x00FF	BOTTOM	TOP
6	9 bits FPWM	0x01FF	BOTTOM	TOP
7	10 bits FPWM	0x03FF	BOTTOM	TOP
8	PFCPWM	ICR1	BOTTOM	BOTTOM
9	PFCPWM	OCR1A	BOTTOM	BOTTOM
10	PCPWM	ICR1	TOP	BOTTOM
11	PCPWM	OCR1A	TOP	BOTTOM
12	CTC	ICR1	immediately	MAX
13	Keep it	-	-	-
14	FPWM	ICR1	TOP	TOP
15	FPWM	OCR1A	ТОР	ТОР

TCCR1C -TC1 control register C

			TCCR1C -	TC1 control r	egister				
Address: 0x82	!				Default: ()x00			
Bit	7	6	5	4	3	2	1	0	
Name	FOC1A	FOC1B D	OC1B DOC1A	DTEN1		-	-	-	
\mathbf{R} / \mathbf{W}	W	W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	-	-	-	
Initial	0	0	0	0	0	0	0	0	
Bit Nam	e des	cription							
	For	ce Output Co	mpare A.						
	Wh	en operating i	in non-PWM m	ode, the "1" n	node can be wr	itten to the fo	orced output c	ompare bit FO	CIA

		when operating in non-1 with mode, the 11 mode can be written to the foreed output compare on 1001A
		To produce a comparison match. Forcing the compare match does not set the OCF1A flag, nor is it overloaded or cleared
7	FOC1A	Timer, but the output pin OC1A will be updated according to the COM1A settings accordingly
		The same happens as a match.
		When working in PWM mode, write the TCCR1A register to clear it.
		The return value of the read FOC1A is always zero.

- 102 -

Page 109

LGT8FX8D Seri	es - Program	ming Manual 1.0.5	LogicGreen Technologies Co., LTD
6	FOC1B	Force the output comparison B.	
		When operating in non-PWM mode, it is possible to write "1" to	the forced output compare bit FOC1B
		To produce a comparison match. Forcing the match does not set t	he OCF1B flag, nor is it overloaded or cleared
		Timer, but the output pin OC1B will be updated according to the	COM1B settings accordingly
		The same happens as a match. When working in PWM mode, wr	ite the TCCR1A register to its
		Cleared. The return value of the read FOC1B is always zero.	
5	DOC1B TC	1 OFF Output Compare Enable Control High.	
		When the DOC1B bit is set to "1", the trigger source off output c	ompare signal OC1B is enabled. When made
		When the event is triggered, the hardware automatically turns off	the OC1B's waveform output.
		When the DOC1B bit is set to "0", the trigger source off output c	ompare signal OC1B is disabled. When made
		When the event is triggered, the OC1B waveform output is not tu	med off.
4	DOC1A TC	1 OFF Output Compare Enable Control Low.	
		When the DOC1A bit is set to "1", the trigger source off output c	ompare signal OC1A is enabled. When made
		When the event is triggered, the hardware automatically turns off	the OC1A's waveform output.
		When the DOC1A bit is set to "0", the trigger source off output c	ompare signal OC1A is disabled. When made
		When the event is triggered, the OC1A's waveform output is not	turned off.
3	DTEN1 TC	1 dead time enable control bit.	
		When the DTEN1 bit is set to "1", the dead time is enabled. OC1	A and OC1B are in the B channel
		Compare the output generated by the waveform based on the inse	ertion dead time, the inserted dead time interval by the DTR1
		The count time corresponding to the register is determined. OCL	A output waveform polarity by COM1A and COM1B

The relationship between the decision, see OC1A insert dead time after the waveform polarity table shown. When the DTEN1 bit is set to "0", the dead time insertion is disabled and the waveforms of OC1A and OC1B are Since the comparison produces the resulting waveform.

Keep it

2:0

The following table shows the polarity control of the OC1A signal output waveform when the dead time is enabled.

Polarity Control of OC1A	Signal Output	Waveform in Dead	Time Enabled Mode

DTEN1 CC	M1A [1: 0] COM	[1B [1: 0]	description
0	-	-	The OC1A signal polarity is controlled by the OC1A compare output mode
1	0	-	OC1A disconnect, general IO port operation
1	1	-	Keep it
1	2	2	The OC1A signal is the same polarity as the OC1B signal
1	2	3	The OC1A signal is opposite to the polarity of the OC1B signal
1	2	2	The OC1A signal is opposite to the polarity of the OC1B signal
1	2	3	The OC1A signal is the same polarity as the OC1B signal

note:

1) The polarity of the OC1B signal output waveform is controlled by the OC1B compare output mode, which is the same as the unimplemented dead time mode.

DSX1 -TC1	trigger	source	control	register
-----------	---------	--------	---------	----------

DSX1 - TC trigger source control register										
Address: 02	x83	Default: 0x00								
Bit	7	6	5	4	3	2	1	0		
Name DSX17		DSX16	DSX15	DSX14	DSX13	DSX12	DSX11	DSX10		

- 103 -

Page 110

LGT8FX8D Series - Programming Manual 1.0.5					LogicGreen Technologies Co., LTD					
	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	
	Initial	0	0	0	0	0	0	0	0	
	Bit	Name	descriptio	on						
			TC1 trigg	ger source sele	ction control e	nabled bit 7.				
			When set	ting the DSX1	7 bit to "1", T	C0 overflows a	as the output w	aveform		
			OC1A/0	OC1B trigger s	source is enabl	ed. When the I	DOC1A / DOC	C1B bit is "1", 1	he selected touch	
	7	DSX17	The risin	g edge of the i	nterrupt flag re	egister bit will	automatically	turn off the OC	C1A / OC1B waveform	n input
			Out.							
			When set	ting the DSX1	7 bit to "0", T	C0 overflows a	is the output w	aveform		
			The trigg	er source for (OC1A / OC1B	is disabled.				
			TC1 Trig	ger Source Se	lect Control Ei	nable bit 6.				
			When the	e DSX16 bit is	set to "1", TC	2 overflows as	the output sig	nal		
			OC1A/0	OC1B trigger s	source is enabl	ed. When the I	DOC1A / DOC	C1B bit is "1", 1	he selected touch	
	6	DSX16	The risin	g edge of the i	nterrupt flag re	egister bit will	automatically	turn off the OC	CIA / OCIB waveform	n input
			Out.							
			When the	e DSX16 bit is	set to "0", TC	2 overflows as	the output wa	veform		
			The trigg	er source for O	DC1A / OC1B	is disabled.				
			TC1 Trig	ger Source Se	lect Control Ei	nable Bit 5.				
			When the	e DSX15 bit is	set to "1", the	pin level chan	ges by 1 as the	output signal		
			The trigg	er source for v	vaveform OC1	A / OC1B is e	nabled. When	the DOC1A / I	DOC1B bit is "1"	
	5	DSX15	The risin	g edge of the i	nterrupt flag re	egister bit of th	e trigger sourc	e automaticall	y turns off the OC1A	/ OC1B wave
			Shaped o	utput.						
			When the	e DSX15 bit is	set to "0", the	pin level chan	ges by 1 as the	output signal		
			The trigg	er source for v	vaveform OC1	A / OC1B is d	isabled.			
			TC1 trigg	ger source sele	ction control e	nabled bit 4.				
			When the	e DSX14 bit is	set to "1", the	external interr	upt 1 is used to	o turn off the o	utput compare signal	waveform
			OC1A/0	OC1B trigger s	source is enabl	ed. When the I	DOC1A / DOC	21B bit is "1", 1	he selected touch	

4	DSX14	The rising edge of the interrupt flag register bit will automatically turn off the OCIA / OCIB waveform input
		Out.
		When the DSX14 bit is set to "0", the external interrupt 1 is used to turn off the output compare signal waveform
		The trigger source for OC1A / OC1B is disabled.
		TC1 Trigger Source Select Control Enable Bit 3.
		When the DSX13 bit is set to "1", the analog comparator 1 transports channel 1 as the output
		The trigger signal for the comparison signal waveform OC1A / OC1B is enabled. When the DOC1A / DOC1B bit is "1"
3	DSX13	, The rising edge of the interrupt flag register bit of the selected trigger source will automatically turn off OC1A / OC1B
		The waveform output.
		When the DSX13 bit is set to "0", the analog comparator 1 is shipped with channel 1 as the output
		The trigger signal for the comparison signal waveform OC1A / OC1B is disabled.
		TC1 Trigger Source Select Control Enable Bit 0.
		When the DSX12 bit is set to "1", the analog comparator 1 operates as a function to turn off the output
2	DSX12	The trigger signal for the comparison signal waveform OC1A / OC1B is enabled. When the DOC1A / DOC1B bit is "1"
		, The rising edge of the interrupt flag register bit of the selected trigger source will automatically turn off OC1A / OC1B
		The waveform output.

- 104 -

Page 111

LGT8FX8D Series	- Programming	Manual 1.0.5	LogicGreen Technologies Co., LTD
		When the DSX12 bit is set to "0", the analog comparator 1	ransports channel 0 as the output
		The trigger signal for the comparison signal waveform OC	A / OC1B is disabled.
		TC1 Trigger Source Select Control Enable bit 1.	
		When the DSX11 bit is set to "1", the analog comparator 0	op amp channel 1 is used as the output
		The trigger signal for the comparison signal waveform OC	A / OC1B is enabled. When the DOC1A / DOC1B bit is "1" $$
1	DSX11	, The rising edge of the interrupt flag register bit of the sele	cted trigger source will automatically turn off $OC1A$ / $OC1B$
		The waveform output.	
		When the DSX11 bit is set to "0", the analog comparator 0	op amp channel 1 is set as off output
		The trigger signal for the comparison signal waveform OC	A / OC1B is disabled.
		TC1 Trigger Source Select Control Enable Bit 0.	
		When the DSX10 bit is set to "1", the analog comparator 0	op amp channel 0 is set as off output
		The trigger signal for the comparison signal waveform OC	A / OC1B is enabled. When the DOC1A / DOC1B bit is "1"
0	DSX10	, The rising edge of the interrupt flag register bit of the sele	cted trigger source will automatically turn off OC1A / OC1B
		The waveform output.	
		When the DSX10 bit is set to "0", the analog comparator 0	op amp channel 0 is used to turn off the output
		The trigger signal for the comparison signal waveform OC	A / OC1B is disabled.

The following table controls the selection of the trigger source for the waveform output.

		Table 1 Turns off the trigger source so	election control for the OC1A / OC1B waveform output
DOC1x I	OSX1n = 1	Trigger source	description
0	-	-	The DOC1x bit is "0" and the trigger source turns off the waveform output Can be forbidden
1	0	Analog Comparator 0 Channel 0	The rising edge of ACIF00 will turn off the OC1x waveform output
1	1	Analog Comparator 0 Channel 1	The rising edge of ACIF01 will turn off the OC1x waveform output
1	2	Analog Comparator 1 Channel 0	The rising edge of ACIF10 will turn off the OC1x waveform output
1	3	Analog Comparator 1 Channel 1	The rising edge of ACIF11 will turn off the OC1x waveform output
1	4	External interrupt 1	The rising edge of INTF1 will turn off the OC1x waveform output
1	5	Pin level change	The rising edge of PCIF1 will turn off the OC1x waveform output
1	6	TC2 overflow	The rising edge of TOV2 will turn off the OC1x waveform output
1	7	TC0 overflows	The rising edge of TOV0 will turn off the OC1x waveform output

note:

2) When DSX1n = 1 indicates that the nth bit of the DSX1 register is 1, each register bit can be set at the same time.

TCNTIL - TC1 count register low byte

Address: 0x84

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Bit	7	6	5	4	3	2	1	0
Name	TCNT1L	TCNTIL	TCNT1L	TCNT1L	TCNT1L	TCNT1L	TCNT1L	TCNTIL
	7	6	5	4	3	2	1	0
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}			
Initial	0	0	0	0	0	0	0	0

- 105 -

Page 112

LGT8FX8D Series - Programming Manual 1.0.5			g Manual 1.0.5	LogicGreen Technologies Co., LTD				
	Bit	Name	description					
			TC1 The low byte of the count value.					
			TCNT1H and TCNT1L together to form TCNT1, through TC	CNT1 register can be directly				
			Read and write access to the 16-bit count of the counter. Read	ding and writing 16-bit registers requires two operations.				
			When writing 16-bit TCNT1, write TCNT1H first. When rea	ding 16-bit TCNT1, it should be read first				
			TCNT1L.					
			The CPU writes to the TCNT1 register will prevent the comp	will prevent the compare horses from the next timer clock cycle				
	7:0 ICN1	CN11[7:0]	With the occurrence, even if the timer has stopped. This allow	vs the value of the TCNT1 register to be initialized				
			Consistent with the value of OCR1x without triggering an int	errupt.				
			If the value of TCNT1 is written to or equal to the value of O	CR1x, the comparison match is lost.				
			Into an incorrect waveform.					
			The timer stops counting when no clock source is selected, be	ut the CPU can still access TCNT1. CPU write				
			The counter has a higher priority than zeroing or addition and	l subtraction.				

TCNT1H -TC1 count register high byte

TCNTIH - TC1 count register high byte Default: 0x00 Address: 0x85 Bit 7 5 4 3 2 1 0 6 TCNT1H TCNT1H TCNT1H TCNT1H **TCNT1H** TCNT1H TCNT1H TCNT1H Name 7 6 5 4 3 2 1 0 R / W R / W R/W R / W R / W R / W R / W R / W R / W Initial 0 0 0 0 0 0 0 0 Bit Name description

BR	. tunne	
		TCl The high byte of the count value.
		TCNT1H and TCNT1L together to form TCNT1, through the TCNT1 register can be straight
		Read and write access to the 16-bit count of the counter. Reading and writing 16-bit registers takes twice
		operating. When writing 16-bit TCNT1, write TCNT1H first. When reading 16-bit TCNT1, first
		Read TCNT1L.
7. 0 TONT	1 [15, 0]	The CPU writes to the TCNT1 register will prevent the compare horses from the next timer clock cycle
7:0 ICN1	1 [15: 8]	With the occurrence, even if the timer has stopped. This allows the value of the TCNT1 register to be initialized
		Consistent with the value of OCR1x without triggering an interrupt.
		If the value written to TCNT1 equals or bypasses the OCR1x value, the compare match is lost,
		Resulting in incorrect waveform results.
		The timer stops counting when no clock source is selected, but the CPU can still access TCNT1. CPU write
		The counter has a higher priority than zeroing or addition and subtraction.

ICR1L -TC1 input capture register low byte

ICRIL - TC1 input capture register low byte

Address: 0x86

Default: 0x00

- 106 -

Page 113

LGT8FX8D Series - Programming Manual 1.0.5							LogicGreen Technologies Co., LTD			
	Bit	7	6	5	4	3	2	1	0	
	Name ICR1L7		ICR1L6	ICR1L5	ICR1L4	ICR1L3	ICR1L2	ICR1L1	ICR1L0	
	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	
	Initial	0	0	0	0	0	0	0	0	
	Bit	Name	description							
	TC1 Enter the low byte of the capture value.									

 7:0
 ICR1 [7:0]
 Operation. When writing 16-bit ICR1, write ICR1H first. When reading 16-bit ICR1, read it first

 ICR1 [7:0]
 ICR1. When writing 16-bit ICR1, write ICR1H first. When reading 16-bit ICR1, read it first

 ICR1. When the input capture is triggered, the count value TCNT1 is updated to the ICR1 register

 In the device. The ICR1 register can also be used to define the TOP value of the count.

ICR1H -TC1 input capture register high byte

	ICR1H - TC1 input capture register high byte										
Address	0x87				Default: 0x0	00					
Bit	7	6	5	4	3	2	1	0			
Name IO	Name ICR1H7 ICR1H6 ICR1H5 ICR1H4 ICR1H3 ICR1H2 ICR1H1 ICR1H0										
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}			
Initial	0	0	0	0	0	0	0	0			
Bit	Name	description	n								
		TC1 Enter	the high byte	of the capture	value.						
		ICR1H an	d ICR1L comb	ine to form 16	-position ICR1	. Reading and	writing 16-bit	registers requir	es two		
7:0	ICR1 [15: 8]	Operation.	When writing	write ICR1H fi	rite ICR1H first. When reading 16-bit ICR1, read it first						
		ICR1L. W	ICR1L. When the input capture is triggered, the count value TCNT1 is updated to the ICR1 register								

In the device. The ICR1 register can also be used to define the TOP value of the count.

OCR1AL -TC1 Output compare register A low byte

		0C.	RIAL - TC1 C	utput compare	e register A lov	v byte				
Address: 0x	88		Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
N	OCR1AL	OCR1AL	OCRIAL	OCR1AL	OCR1AL	OCR1AL	OCR1AL	OCR1AL		
Name	7	6	5	4	3	2	1	0		
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	de	escription							
		0	utput the lowe	r byte of comp	are register A.					
7:0	OCR1A [7	:0] O	CR1AL and O	CR1AH comb	ine to form 16	-position OCR	1A. Read and	write 16 bits		
		TI	he register requ	ires two opera	tions. When v	vriting 16-bit (OCR1A, write	OCR1AH first.		

- 107 -

Page 114

LGT8FX8D Series - Programming Manual 1.0.5

When reading 16-bit OCR1A, read OCR1AL first.

OCR1A is compared with the counter value TCNT1 without interruption. Compare matches can be used To produce an output compare interrupt, or to generate a waveform on the OC1A pin. When using PWM mode, the OCR1A register uses a double buffered register. And ordinary In the mode of operation and match clear mode, the double buffering function is disabled. Double buffering To synchronize the update OCR1A register with the count maximum or minimum time, Thereby preventing the generation of asymmetric PWM pulses, eliminating the interference pulses. When using the double buffering function, the CPU accesses the OCR1A buffer register, which is disabled When the CPU function is OCR1A itself.

OCR1AH -TC1 Output compare register A high byte

		0	CRIAH - TC1 C	utput compare	e register A hi	gh byte				
Address: 02	x89				Default: 0x0	00				
Bit	7	6	5	4	3	2	1	0		
	OCR1A	OCR1A	OCR1A	OCR1A	OCR1A	OCR1A	OCR1A	OCR1A		
Name	H7	H6	Н5	H4	Н3	H2	H1	H0		
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W		
Initial	0	0	0	0	0	0	0	0		
Bit	Name		description							
			Outputs the high byte of compare register A.							
			OCR1AL and OCR1AH combine to form 16-position OCR1A. Read and write 16 bits							
			The register requires two operations. When writing 16-bit OCR1A, write OCR1AH first.							
			When reading 16-bit OCR1A, read OCR1AL first.							
			OCR1A is compared with the counter value TCNT1 without interruption. Compare matches can be used							
			To produce an output compare interrupt, or to generate a waveform on the OC1A pin.							
7:0	OCR1A [15:	: 8]	When using PWM mode, the OCR1A register uses a double buffered register. And ordinary							
			In the mode of c	peration and r	natch clear mo	ode, the double	buffering fun	ction is disabled.	Double buffering	
			To synchronize	the update OC	R1A register v	with the count	maximum or r	ninimum time,		
			Thereby prevent	ing the genera	tion of asymm	netric PWM pı	ılses, eliminati	ng the interferenc	e pulses.	
			When using the	double bufferi	ing function, th	he CPU access	es the OCR1A	. buffer register, v	which is disabled	
			When the CPU function is OCR1A itself.							

OCR1BL -TC1 Output compare register B low byte

		001	<i>R1BL</i> - TC1 O	utput Compar	e Register B L	ow Byte		
Address: 0>	(8A				Default: 0x0	0		
Bit	7	6	5	4	3	2	1	0
N	OCR1BL							
Name	7	6	5	4	3	2	1	0
\mathbf{R} / \mathbf{W}								

- 108 -

Page 115

LGT8F2	LGT8FX8D Series - Programming Manual 1.0.5						LogicGreen Technologies Co., LTD			
	Initial	0	0	0	0	0	0	0	0	
	Bit	Name	description							
	Output the lower byte of compare register B.									
			OCR1BL and O	CR1BH combi	ne to form 16-	bit OCR1B. F	Read and write	16-bit register	rs	
Need two operations. When writing 16-bit OCR1B, write OCR1BH first. Read 16-bit OCR1B				OCR1B						
			, You should first	t read OCR1B	L.					
			OCR1B is compa	ared with the c	ounter value 7	CNT1 withou	it interruption.	Compare mat	tches can be used to generate	

7: 0 OCR1B [7: 0]

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Output compare interrupt, or used to generate waveforms on OC1B pins.

When using PWM mode, the OCR1B register uses a double buffered register. While the ordinary work model Type and match clear mode, the double buffering function is disabled. Double buffering can be updated The OCR1B register is synchronized with the count maximum or minimum time to prevent generation of Symmetric PWM pulses eliminate the interference pulses.

When using the double buffering function, the CPU accesses the OCR1B buffer register, which prohibits double buffering When the CPU access is OCR1B itself.

OCR1BH -TC1 Output compare register B high byte

	OCRIBH - TC1 Output Compare Register B High Byte									
Address: 0	x8B	Default: 0x00								
Bit	7	6	5	4	3	2	1	0		
Name OCR1BH7		OCR1B	OCR1B	OCR1B	OCR1B	OCR1B	OCR1B	OCR1B		
		H6	Н5	H4	H3	H2	H1	H0		
\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	descrip	tion							
		Outputs the high byte of compare register B.								

		OCR1BL and OCR1BH combine to form 16-bit OCR1B. Read and write 16-bit register
		The device needs two operations. When writing 16-bit OCR1B, write OCR1BH first. Read 16 bits
		OCR1B should read OCR1BL first.
		OCR1B is compared with the counter value TCNT1 without interruption. Compare matches can be used
		Generates an output compare interrupt, or is used to generate a waveform on the OC1B pin.
7:0	OCR1B [15: 8]	When using PWM mode, the OCR1B register uses a double buffered register. While the general work
		In mode and match clear mode, the double buffering function is disabled. Double buffering can be more
		The new OCR1B register is synchronized with the counting of the maximum or minimum moments to prevent production
		The asymmetric PWM pulse eliminates the interference pulse.
		When using the double buffering function, the CPU accesses the OCR1B buffer register, which prohibits double buffering
		Function when the CPU access is OCR1B itself.

TIMSK1 - TC1 interrupt mask register

TIMSKI - TC1 interrupt mask register

- 109 -

Page 116

LGT8FX8D Series -	Programmi	ng Manual 1	.0.5		LogicGreen Technologies Co., LTD				
Address: 0x6	5F				Default: 0	x00			
Bit	7	6	5	4	3	2	1	0	
Name	-	-	TICIE1		-	OCIE1A O	CIE1B	TOIE1	
R / W	-	-	R / W		-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	
Bit 7: 6	Name -	Keep it.			descripti	on			
5	TICIE1	TC1 input capture interrupt enable bit. When the ICIE1 bit is "1" and the global interrupt is set, the TC1 input capture interrupt is enabled, when When the input capture trigger is enabled, the ICF1 flag of TIFR1 is set and an interrupt occurs. When the ICIE1 bit is "0", the TC1 input capture interrupt is disabled.							
4: 3	-	Keep it.							
		TC1 Outpu	it Compare B Ma	atch Interrup	t Enable bit.				
		When the	OCIE1B bit is "1	" and the glo	bal interrupt	is set, the TC1 o	output compar	es the B match i	nterrupt enable.

2	OCIE1B	When a compare match occurs, that is, when the OCF1B bit in TIFR is set, an interrupt is generated.				
		When the OCIE1B bit is "0", the TC1 output compare B match interrupt is disabled.				
		TC1 Output Compare A Match Interrupt Enable bit.				
1	OCIELA	When the OCIE1A bit is "1" and the global interrupt is set, the TC1 output compares the A match interrupt enable.				
1	OCIEIA	When a compare match occurs, that is, when the OCF1A bit in TIFR is set, an interrupt is generated.				
		When the OCIE1A bit is "0", the TC1 output compare A match interrupt is disabled.				
		TC1 overflow interrupt enable bit.				
0	TOFT	When the TOIE1 bit is "1" and the global interrupt is set, the TC1 overflow interrupt is enabled. When TC1 overflows				
0	TOIEI	When the TOV1 bit in TIFR is set, the interrupt is generated.				
		When the TOIE1 bit is "0", the TC1 overflow interrupt is disabled.				

TIFR1 - TC1 interrupt flag register

			TIFR1 - TC	1 interrupt f	lag register					
Address: 0x3	6	Default: 0x00								
Bit	7	6	5	4	3	2	1	0		
Name	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1		
\mathbf{R} / \mathbf{W}	-	-	\mathbf{R} / \mathbf{W}	-	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W		
Initial	0	0	0	0	0	0	0	0		
Bit Na	me				description	1				

Bit	Name	description
7:6	-	Keep it.
		Enter the capture flag.
		The ICF1 flag is set when an input capture event occurs. When ICR1 is used as the TOP value of the count,
5	ICF1	And the count value reaches the TOP value, the ICF1 flag is set. If ICIE1 is "1" and the global interrupt flag is set
		Set, an input capture interrupt is generated. ICF1 is automatically cleared when this interrupt service routine is executed,
		Or write "1" to ICF1 bit to clear this bit.

- 110 -

Page 117

LGT8F	X8D Seri	es - Prograr	nming Manual 1.0.5 LogicGreen Technologies Co., LTD
	4:3	-	Keep it.
			Output Compare B match flag.
	2		When TCNT1 is equal to OCR1B, the compare unit gives the match signal and sets the compare flag OCF1B.
		OCF1B	If the output compare interrupt enable OCIE1B is "1" and the global interrupt flag is set,
			Out of comparison. OCF1B will be cleared automatically or written to the OCF1B bit when this interrupt service routine is executed
			"1" can also be cleared to this bit.
			Output Compare A match flag.
		OCF1A	When TCNT1 is equal to OCR1A, the compare unit gives the match signal and sets the compare flag OCF1A.
	1		If the output compare interrupt enable OCIE1A is "1" and the global interrupt flag is set,
			Out of comparison. OCF1A will be cleared automatically or written to OCF1A when this interrupt service routine is executed
			"1" can also be cleared to this bit.
			Overflow flag.
			When the counter overflows, set the overflow flag TOV1. If the overflow interrupt is enabled, TOIE1 is enabled
	0	TOV1	"1" and the global interrupt flag is set, an overflow interrupt is generated. When this interrupt service routine is executed, TOV1
			This bit can also be cleared by clearing it automatically or by writing "1" to the TOV1 bit.

DTR1 -TC1 dead time register

	DTRI - TC1 dead time register
Address: 0x8C	Default: 0x00

Bit 7 6 5 4 3 2 1 0

Name DTF	R17	DTR16	DTR15	DTR14	DTR13	DTR12	DTR1	DTR10				
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W				
Initial	0	0	0	0	0	0	0	0				
Bit	Name	description	n									
7:0	DTD	TC1 dead	TC1 dead time register.									
		When the	When the DTEN1 bit of the TCCR1B register is "1", the inserted dead time control is enabled.									
	DIKI	The dead	The dead time of the insertion is determined by DTR1, and the length of the time is the corresponding DTR1 count clock									
		time.										

TCKCSR -TC clock control status register

TCKCSR - TC clock control status register										
Address: 0xEC			Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
Name	-	F2XEN	TC2XF1 TC2XF0		-	AFCKS	TC2XS1 T	C2XS0		
\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	R / O	R / O	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		

- 111 -

Page 118

LGT8FX8D Series	Programmi	ng Manual 1.0.5	LogicGreen Technologies Co., LTD
Bit	Name	description	
7	-	Keep it	
		RC 32M multiplier output enable control bit	
		When the F2XEN bit is set to "1", the multiplier output of the	32M RC oscillator is enabled and outputs 64M
6	F2XEN	High speed clock	
		When the F2XEN bit is set to "1", the multiplier output of the	32M RC oscillator is disabled and can not be output
		64M high speed clock	
		TC high speed clock mode flag bit 1	
5	TC2XF1	When the TC2XF1 bit is read as "1", it indicates that the timer	counter 1 is operating in the high-speed clock mode,
		"0", it indicates that the timer counter 1 is operating in the syst	em clock mode
4	TC2XF0 TC	High Speed Clock Mode Flag Bit 0, Reference Timer Counter	0 Register Description
3	-	Keep it	
2	AFCKS OP	/ AC filter clock selection, please refer to OP / AC section for o	detailed definition
		TC high speed clock mode selection control bit 1	
1	TC2XS1	When the TC2XS1 bit is set to "1", the timer counter 1 is select	ted to operate in high-speed clock mode
		When the TC2XS1 bit is set to "0", the timer counter 1 is select	ted to operate in the system clock mode
0	TC2XS0 TC	High Speed Clock Mode Select Control Bit 0, Reference Time	r Counter 0 Register Description

- 112 -

Page 119

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Timer / Counter 0/1 prescaler

- 2 10-bit prescaler
- TC0 and TC1 multiplexed prescaler CPS10 in multiplexed mode
- In the single mode TC0 exclusive prescaler CPS10, TC1 exclusive prescaler CPS1
- Support software reset

Overview

In multiplexed mode (PSS1 = 0), TC0 and TC1 share a 10-bit prescaler CPS10, but they have different Frequency setting.

Single mode (PSS1 = 1), TC0 independent use of prescaler CPS10, TC1 independent use of prescaler CPS1, it They have different frequency settings.

The following description is used for TC0 and TC1, where n represents 0 or 1.

TC0 / TC1 Prescaler structure

Internal clock source

When setting CSn [2: 0] = 1, the timer counter can be set directly by the system clock clkio or the high speed clock rcm2x (internal 32M RC oscillator output clock 2 times the frequency) drive. Prescaler can output 4 different clock frequencies, respectively clkio / 8, clkio / 64, clkio / 256 and clkio / 1024.

The divider is reset

Multiplexing mode

When the PSS1 bit is set to "0", TC0 and TC1 share a prescaler CPS10.

The prescaler is run independently and its operation is independent of TC's clock selection logic, and it has TC0 and TC1 shared. The status of the prescaler has an effect on the application of the frequency divider due to the influence of clock selection control. When the timer When the output of the prescaler is enabled and the count clock source (6 > CSn [2: 0] > 1) is selected, the effect is generated. From

- 113 -

Page 120

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The timer enable to the first count may take 1 to N + 1 system clocks, where N is the prescaler factor (8, 64,256 or 1024).

It is possible to synchronize the timer and program operation by resetting the prescaler. But it must be noted that another timer is If you are using this prescaler, resetting the prescaler will affect all timers connected to it.

Single mode

When the PSS1 bit is set to "1", TC0 independently uses the prescaler CPS10, the prescaler is reset by the PSR10 bit To control. TC1 independent use of prescaler CPS1, prescaler reset by the PSR1 bit to control. The respective reset Acting alone, does not affect other prescalers.

External clock source

The external clock source provided by the T0 / T1 pin can be used as the count clock source. The signal on the T0 / T1 pin is synchronized And the edge detector is used as the clock source for the counter. Each rising edge (CSn [2: 0] = 7) or falling edge (CSn [2: 0] = 6) Will produce a count pulse. The external clock source is not fed into the prescaler.

Due to the presence of pin synchronization and edge detection circuitry, the change in T0 / T1 level requires a delay of 2.5 to 3.5 lines The clock can update the counter.

Disable or enable the clock input must be held at T0 / T1 at least one system clock cycle before it can be performed. The possibility of generating an error counting clock pulse.

To ensure proper sampling, the external clock pulse width must be greater than one system clock cycle, with a duty cycle of 50%. The external clock frequency must be less than half the system clock frequency. Due to the error of the oscillator itself brings the system clock frequency. And the difference in duty cycle, it is recommended that the maximum frequency of the external clock should not be greater than f sys / 2.5.

Register definition

GTCCR - General Timing Counter Control Register

GTCCR - General Timing Counter Control Register										
Address: 0x43			Default: 0x00							
D.'.	7	,	r.		2	2	,	0		
BI	/	6	5	4	3	2	1	0		
Name	TSM	-	PSRASY PSRSYNC					SRSYNC		
$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	W	W		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	description								
Timer counter synchronization mode control bits.										
7	TSM	When setting the TSM bit to "1", it is the timer counter synchronization mode. In synchronous mode, write to PSRASY								

Page 121

LogicGreen Technologies Co., LTD

LGT8FX8D Series - Programming Manual 1.0.5

		The timer counter is aborted and configured to the same value.
		When the TSM bit is set to "0", the values of the PSRASY and PSRSYNC bits are cleared by hardware and
		When the counter starts working at the same time.
6: 2	-	Keep it.
1	PSRASY	See Timer TC2 Register Description.
0	PSRSYNC	Prescaler CPS10 reset control bit.
		When the PSRSYNC bit is set to "1", the prescaler CPS10 will be reset. When the TSM bit is not set
		, The hardware clears the PSRSYNC bit after reset.
		When the PSRSYNC bit is set to "0", the setting is invalid.
		In multiplexed mode, the TC0 / TC1 shared prescaler, the reset will affect both timers.
		In single mode, reset will only affect TC0.
		The value of reading this bit will always be "0".

PSSR - Prescaler Select Register

			PSSR - Pre	escaler Select F	Register				
Address: 0:	xE2		Default: 0x00						
Bit	7	6	5	4	3	2	1	0	
Name	PSS1	-	-	-	-	-	-	PSR1	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	-	-	-	-	-	-	W	
Initial	0	0	0	0	0	0	0	0	
Bit	Name Des	scription							
		Prescaler select	tion control bit.						
		When the PSS1	l bit is set to "1	", it is the pres	caler mode. TC	0 alone use the	e prescaler CF	S10,	
7	PSS1	TC1 uses the p	rescaler CPS1 a	alone.					
		When the PSS1	bit is set to "0	", the prescaler	is multiplexed	I. TC0 and TC	l share the pre	escaler	
		CPS10. Prescal	ler CPS1 is inv	alid and will be	e reset.				
6: 1	-	Keep it.							
0	PSR1	Prescaler CPS1 reset control bit. The PSR1 bit is valid only in single mode.							

When the PSR1 bit is set to "1", the prescaler CPS1 will be reset. Hardware will be cleared after reset PSR1 bit. When setting the PSR1 bit to "0", the setting is invalid. The value of reading this bit will always be "0".

- 115 -

LogicGreen Technologies Co., LTD

Page 122

LGT8FX8D Series - Programming Manual 1.0.5

8 -bit timer / counter 2

- 8-bit counter
- Two separate comparison units

- When the compare match occurs, the counter is automatically cleared and loaded automatically
- Phase-corrected PWM output without interference pulse
- Frequency generator
- External event counter
- 10-bit clock prescaler
- overflow and compare match interrupt
- Allows the use of external 32.768KHz RTC crystal count

Overview

TC2 structure diagram

TC2 is a general-purpose 8-bit timer counter module that supports PWM output and can produce waveforms precisely. TC2 package It contains 1 8-bit counter, waveform generation mode control unit and 2 output comparison unit. Waveform generation mode control unit Controls the operation mode of the counter and the generation of the comparison output waveform. Depending on the mode of operation, the counter is for each one Count the clock Clkt2 to clear, add one or minus one operation. Clkt2 can be generated by an internal clock source or an external clock source. When using an external 32.768KHz crystal count, TC2 can be used as an RTC counter. When the counter counts the value TCNT2

- 116 -

Page 123

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Reaches the maximum value (equal to the maximum value 0xFF or the output compare register OCR2A, defined as TOP, defining the maximum value for MAX To distinguish between), the counter will be cleared or decremented. When the counter count value TCNT2 reaches the minimum value (etc.) At 0x00, defined as BOTTOM), the counter will be added to an operation. When the counter count value TCNT2 arrives OCR2A / OCR2B, also known as when a compare match occurs, will clear or set the output compare signal OC2A / OCR2B, To generate PWM waveforms.

Operating mode

Timing counter 2 has four different modes of operation, including normal mode (Normal), compare match clear (CTC) Mode, fast pulse width modulation (FPWM) mode and phase correction pulse width modulation (PCPWM) mode, Generates the mode control bit WGM2 [2: 0] to select. The four modes are described below in detail. Because there are two independent output ratios The units are represented by "A" and "B", respectively, and the lower output "x" is used to represent the two output compare cell channels.

Normal mode

The normal mode is the simplest mode of operation for the timer counter. The waveform generation mode control bit, WGM2 [2: 0] = 0, The maximum value of the TOP is MAX (0xFF). In this mode, the count mode is incremented by one for each count clock After the counter reaches the TOP overflow, it returns to BOTTOM to restart. In the same value as the count value TCNT2 becomes zero Set the timer counter overflow flag TOV2 in the clock. The TOV2 flag in this mode is like the 9th count bit, just Will only be set to not be cleared. The overflow interrupt service routine automatically clears the TOV2 flag, which the software can use to improve it The resolution of the counter. There is no special case in normal mode to consider, you can always write a new count value. The waveform of the output compare signal OC2x can be obtained by setting the data direction register of the OC2x pin to output. When COM2x = 1 , The OC2x signal is flipped when a compare match occurs. The frequency of the waveform in this case can be calculated using the following formula:

 $f_{oc2xnormal} = f_{sys} / (2 * N * 256)$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

The output compare unit can be used to generate interrupts, but interrupts are not recommended in normal mode, which takes too much CPU time.

CTC mode

When the WGM2 [2: 0] = 2 is set, the timer counter 2 enters the CTC mode, and the maximum value of the count is OCR2A. in In this mode, the count mode is incremented by one for each count clock. When the value of the counter TCNT2 equals TOP The counter is cleared. OCR2A defines the maximum value of the count, that is, the resolution of the counter. This mode allows the user to be tolerant Easy control matches the frequency of the output and also simplifies the operation of the external event count. When the counter reaches the maximum value of the count, the output compare match flag OCF2 is set and the corresponding interrupt enable is set Will be interrupted. The OCR2A register can be updated in the interrupt service routine to count the maximum value. In this mode OCR2A does not use double buffering, the counter is updated with no prescaler or very low prescaler to maximum Be careful when approaching the minimum. If the value written to OCR2A is less than the current TCNT2 value, the counter will be lost One match match. Before the next match match occurs, the counter has to count to TOP before starting from BOTTOM Start counting to OCR2A value. As with the normal mode, the count value is set back to the BOTTOM count clock to set the TOV2 flag Mind The waveform of the output compare signal OC2x can be obtained by setting the data direction register of the OC2x pin to output. when When COM2x = 1, the OC2x signal is flipped when a compare match occurs. In this case, the frequency of the waveform can be expressed by the following equation To calculate:

 $f_{oc2xctc} = f_{sys} / (2 * N * (1 + OCR2A))$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024). As can be seen from the formula, when setting OCR2x

- 117 -

Page 124

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

For 0x0 and no prescaler, the output waveform with maximum frequency f $_{\text{sys}}$ / 2 can be obtained .

Fast PWM mode

When setting WGM2 [2: 0] = 3 or 7, the timer counter 2 enters the fast PWM mode and can be used to generate high frequency

PWM waveform, the maximum value TOP is MAX (0xFF) or OCR2A, respectively. Fast PWM mode and other PWM

The pattern is different in that it is a one-way operation. The counter is incremented from the minimum value of 0x00 to TOP and then back to BOTTOM

number. When the count value TCNT2 reaches OCR2x or BOTTOM, the output compare signal OC2x is set or cleared.

Refer to compare the output mode COM2x settings, see the register description for details. As a result of one-way operation, fast PWM mode

The operating frequency is twice the phase-corrected PWM mode using bidirectional operation. High frequency characteristics make fast PWM mode Suitable for power regulation, rectification and DAC applications. High-frequency signals can reduce the scale of external components (inductive capacitors, etc.) So as to reduce system cost.

When the count value reaches the maximum value, the timer counter overflow flag TOV2 will be set and the value of the compare buffer will be updated

To the comparison value. If the interrupt is enabled, the compare buffer OCR2x register can be updated in the interrupt service routine.

The waveform of the output compare signal OC2x can be obtained by setting the data direction register of the OC2x pin to output. The frequency of the waveform The rate can be calculated using the following formula:

 $f_{oc2xfpwm} = f_{sys} / (N * (1 + TOP))$

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

When a compare match occurs between TCNT2 and OCR2x, the waveform generator sets (clears) the OC2x signal. When TCNT2 is cleared At zero, the waveform generator clears (sets) the OC2x signal to generate a PWM wave. Whereby the extreme value of OCR2x will be Will produce a special PWM waveform. When OCR2x is set to 0x00, the output PWM is every (1 + TOP) count clock There is a narrow spike. When OCR2x is set to the maximum value, the output waveform is a continuous high or low level.

Phase correction PWM mode

When setting WGM2 [2: 0] = 1 or 5, the timer counter 2 enters the phase correction PWM mode, the maximum value of the count TOP is MAX (0xFF) or OCR2A, respectively. The counter is bidirectional, incremented by BOTTOM to TOP, and then again Decrements to BOTTOM, and repeats this operation. When the count reaches TOP and BOTTOM, the counting direction is changed and the count value is TOP or BOTTOM only stay on a count clock. In the process of increment or decrement, the count value TCNT2 and OCR2x When matching, the output compare signal OC2x will be cleared or set, depending on the setting of the compare output mode COM2x. With a single Compared to the operation, the maximum frequency available for bidirectional operation is small, but its excellent symmetry is more suitable for motor control. In phase correction PWM mode, the TOV2 flag is set when the count reaches BOTTOM. When the count reaches TOP, compare The value of the buffer is updated to the comparison value. If the interrupt is enabled, the compare buffer OCR2x can be updated in the interrupt service routine Deposit. The waveform of the output compare signal OC2x can be obtained by setting the data direction register of the OC2x pin to output. The frequency of the waveform The rate can be calculated using the following formula:

 $f_{oc2xpcpwm} = f_{sys} / (N * TOP * 2)$

Will remain low or high

Where N represents the prescaler factor (1, 8, 64, 256, or 1024).

During the count up, when the TCNT2 matches OCR2x, the waveform generator clears (sets) the OC2x signal. in

In the process of decrementing the count, when the TCNT2 matches OCR2x, the waveform generator sets (clears) the OC2x signal. thus The extreme value of OCR2x will produce a special PWM wave. When the OCR2x is set to the maximum or minimum value, the OC2x signal is output

In order to ensure that the output PWM wave symmetry on both sides of the minimum value, in the absence of a comparison match, there are two cases Flip OC2x signal. The first case is when the value of OCR2x changes from the maximum value 0xFF to other data. When OCR2x

Is the maximum value, the count value reaches the maximum, OC2x output and the previous descending count when the results of the same match, that is,

- 118 -

Page 125

LGT8FX8D Series - Programming Manual 1.0.5

Hold OC2x unchanged. The value of the new OCR2x (non-0xFF) is updated and the value of OC2x is always maintained. When the ascending order counts, a compare match occurs. At this point the OC2x signal is not centered at the minimum, so it needs to be When TCNT2 reaches the maximum value, it flips the OC2x signal, which means that the first match of the OC2x signal is reversed when no compare match occurs condition. The second case is that when TCNT2 starts counting from a value higher than OCR2x, it will lose a compare match,

LogicGreen Technologies Co., LTD

Thus causing the occurrence of asymmetric situations. Also need to flip the OC2x signal to achieve the minimum on both sides of the symmetry.

TC2 asynchronous operation mode

When the AS2 bit in the ASSR register is "1", TC2 operates in asynchronous mode and the counter clock source is derived from Oscillator for external timer counter. Asynchronous mode TC2 operation to consider the following points.

- The transition between synchronous and asynchronous modes can cause TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B
 - Data corruption. The safe operation steps are as follows:
 - 1. Clear the OCIE2A, TOIE2, and OCIE2B register bits to turn off TC2 interrupts;
 - 2. Set the AS2 bit to select the appropriate clock source;
 - 3. Write new data to TCNT2, OCR2A, TCCR2A, OCR2B and TCCR2B registers;
 - When switching to asynchronous mode, wait for TCN2UB, OCR2AUB, TCR2AUB, OCR2BUB, and TCR2BUB Bit is cleared;
 - 5. Clear TC2 interrupt flag bit;
 - 6. Enable interrupts that need to be used.
- The oscillator is best to use 32.768KHz watch crystal. The system clock frequency must be four times higher than the crystal frequency.

 CPU write TCNT2, OCR2A, TCCR2A, OCR2B and TCCR2B, the hardware will be the first data into the scratchpad, The rising edge of the two TOSC1 clocks is latched into the corresponding register. The data is latched from the scratchpad to the destination store The new data write operation can not be performed before the device. Each register has its own independent scratchpad, so write TCNT2 And does not interfere with writing OCR2. The asynchronous status register, ASSR, is used to check whether the data has been written to the destination register.

If TC2 is used as the wake-up condition for MCU sleep mode, it can not be entered before each register update ends Sleep mode, otherwise the MCU may enter the sleep mode before the TC2 setting takes effect, so the TC2 can not wake up the system System.

If TC2 is used as the wake-up condition for MCU sleep mode, care must be taken to re-enter the sleep mode. in The interrupt logic requires a TOSC1 clock cycle to be reset if the time from wake-up to re-entry dormancy is less than one TOSC1 clock cycle, the interrupt will no longer occur, the device can not wake up. It is recommended to use the following methods:
- 1. Write the appropriate data for each register;
- 2. Wait for the corresponding update busy flag of ASSR to clear;
- 3. Go to sleep mode.
- If the asynchronous operating mode is selected, the TC2 oscillator will always operate unless it enters the power down mode. Users must be aware that, The stabilization time of this oscillator may be as long as 1 second, so it is recommended that the user wait at least after enabling the TC2 oscillator 1 second and then use TC2 asynchronous mode of operation.
- Asynchronous operation mode Sleep mode wake-up process: After the interrupt condition is met, the next timer clock starts to call Wake up the process. That is, the counter accumulates at least one clock before the processor can read the value of the counter. After the wake-up, the MCU executes the interrupt service routine and then executes the program after the SLEEP statement.
- Reading the value of TCNT2 within a short time after waking up from Sleep mode may return incorrect data. Because TCNT2 is
 Driven by an asynchronous TOSC1 clock, while reading TCNT2 must be synchronized via an internal system clock register
 To complete, the synchronization occurs on the rising edge of each TOSC1. After wake-up from Sleep mode, the system clock is reactivated and read
 The TCNT2 value is entered before the sleep mode until the next rising edge of the TOSC1 is updated.
 The phase of the TOSC1 is completely unpredictable when awakened from sleep mode, depending on the wake-up time. Therefore, read TCNT2
 The recommended sequence of values is:

- 119 -

Page 126

LGT8FX8D Series - Programming Manual 1.0.5

- 1. Write an arbitrary value to OCR2A or TCCR2A;
- 2. Wait for the corresponding update busy flag to be cleared;
- 3. Read TCNT2.
- In asynchronous mode, the synchronization of the interrupt flag requires 3 system clock cycles plus 1 timer period. In the MCU can be The counter accumulates at least one clock before reading the counter value that causes the interrupt flag to be set. Output the comparison letter The number of changes is synchronized with the timer clock, not the system clock.

LogicGreen Technologies Co., LTD

TC2 prescaler

The TC2 prescaler's input clock is called clkt2s and is selected by the AS2 bit in the ASSR register to select the internal system clock clkio or external TOSC1 clock source, the default is connected with the system clock clkio. If AS2 is set, TC2 will be set by TOSC1 Asynchronous drive. When the TOSC1 pin and TOSC2 pin external a 32.768KHz watch crystal, TC2 can be used as RTC meter The number of devices. It is not recommended to apply an external clock signal directly to the TOSC1 pin.

Figure 5 TC2 prescaler structure

The figure shows the TC2 prescaler, as shown in the figure, the possible prescaler options are: clkt2s / 8, clkt2s / 32, clkt2s / 64, clkt2s / 128, clkt2s / 256, and clkt2s / 1024. You can also select clkt2s and 0 (stop counting). Set the PSR2 of the SFIOR register Bit will reset the prescaler, allowing the user to start working from a predictable prescaler.

Register definition

		TC2 register list	
register	address	Defaults	description
TCCR2A	0xB0	0x00	TC2 control register A
TCCR2B	0xB1	0x00	TC2 control register B

https://translate.googleusercontent.com/translate_f

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

TCNT2	0xB2	0x00	TC2 count register
OCR2A	0xB3	0x00	TC2 Output Compare Register A
OCR2B	0xB4	0x00	TC2 Output Compare Register B
ASSR	0xB6	0x00	TC2 Asynchronous Status Register
TIMSK2	0x70	0x00	The timer counter interrupts the mask register
TIFR2	0x37	0x00	Timer counter interrupt flag register

- 120 -

Page 127

LGT8I	FX8D S	Series - Programm	ning Manual 1.0.5			Lo	gicGreen Te	chnologies (Co., LTD			
	TCCI	R2 A-TC2 Cont	rol Register A									
				TCCR2 A - TC	2 Control Registe	er A						
А	ddress:	0xB0				Default: 0x00						
	Bit	7	6	5	4	3	2	1	0			
	Name	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21 CS	520			
	R / W	W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	R / W	R / WR	/ W			
	Initial	0	0	0	0	0	0	0	0			
в	lit	Name	description									
			TC2 compare ma	atch output A m	ode control high.							
			COM2A1 and C	OM2A0 togethe	er constitute the o	utput compare n	node control C	COM2A [1:	0], control OC2A			
	7	COM2A1	Output waveform. If the 1 or 2 bits of COM2A are set, the output compare waveform occupies OC2A									
	/		Pin, but the pin's data direction register must be set high to output this waveform. In different work									
			Mode, COM2A on the output comparison waveform control is also different, see the specific comparison output mode control									
			Table description	1.								
			TC2 compare match output A mode control low.									
		COM240	COM2A0 and COM2A1 together constitute the output compare mode control COM2A [1: 0], control OC2A									
	6		Output waveform. If the 1 or 2 bits of COM2A are set, the output compare waveform occupies OC2A									
	0	COM2A0	Pin, but the pin's data direction register must be set high to output this waveform. In different work									
			Mode, COM2A on the output comparison waveform control is also different, see the specific comparison output mode control									
			Table description	1.								
			TC2 compare ma	atch output B m	ode control high.							
			COM2B1 and CO	OM2B0 togethe	er form the output	compare mode	control COM2	2B [1: 0], w	hich controls the O	C2B		
	5	COM2B1	Output waveform. If the 1 or 2 bits of COM2B are set, the output compare waveform occupies OC2B									
	5	00111201	Pin, but the pin's	Pin, but the pin's data direction register must be set high to output this waveform. In different work								
			Mode, COM2B	Mode, COM2B on the output comparison waveform control is also different, see the specific comparison output mode control								
			Table description	1.								
			TC2 compare ma	atch output B m	ode control low.							
			COM2B0 and CO	OM2B1 togethe	er constitute the o	utput compare m	ode control C	OM2B [1: 0	0], control OC2B			
	4	COM2B0	Output waveform	n. If the 1 or 2 b	oits of COM2B ar	e set, the output	compare wav	eform occup	pies OC2B			
			Pin, but the pin's	data direction r	register must be s	et high to output	this waveform	n. In differe	nt work			
			Mode, COM2B	on the output co	omparison wavefo	orm control is als	o different, se	e the specif	ic comparison outp	ut mode control		
			Table description	1.								
	3:2	-	Keep it.									
			TC2 waveform g	generation mode	e control high.							
	1	WGM21	WGM20 and WG	GM21, WGM22	2 together form th	e waveform gen	eration mode	control WG	M2 [2: 0], control			
			Counter count m	ode and wavefo	orm generation m	ode, see the wav	eform generat	ion mode ta	ble description.			
			TC2 waveform g	generation mode	e control low.							
	0	WGM20	WGM21 and WG	GM20, WGM22	2 together form th	e waveform gen	eration mode	control WG	M2 [2: 0], control			

Counter count mode and waveform generation mode, see the waveform generation mode table description.

Page 128

LGT8FX8D	Series - Progra	mming Manual 1.0.5				LogicG	reen Technolo	gies Co., LTD				
TCC	R2B - TC2 Co	ontrol Register B										
	6 D1		TCCR2B	- TC2 Contro	ol Register B	1. 0. 00						
Address	: 0xB1				Defa	ult: 0x00						
Bit	7	6	5	4	3	2	1	0				
Name	FOC2A	FOC2B	FOC2B WGM22 CS22 CS21 CS20									
R / W	W	W	-	-	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W				
Initial	0	0	0	0	0	0	0	0				
Bit	Name	description										
		TC2 Force Output C	ompare A c	ontrol bit.								
		When operating in n	on-PWM m	ode, it can b	e done by writing	g "1" to the for	ced output com	pare bit FOC2A				
7	FOCA	Compare match. For	cing the cor	mpare match	does not set the	OCF2A flag, n	or does it overr	ide or clear the ti	mer,			
/	FOC2A	But the output pin O	But the output pin OC2A will be updated according to the COM2A settings accordingly, just what happens									
		Match the same.										
		The return value of r	eading FOC	C2A is alway	s zero.							
		TC2 Force Output Compare B control bits.										
		When operating in non-PWM mode, it can be done by writing "1" to the forced output compare bit FOC2B										
6	FOC2B	Compare match. For	ide or clear the ti	mer,								
		But the output pin O	C2B will be	e updated acc	cording to the CC	M2B settings	accordingly, jus	st as it really happ	pens			
		The return value of t	he read EO(C2B is alway	15 7970							
5.4		Keen it	ne reau roo	C2D is aiway	/5 2010.							
5.4	-	TC2 waveform gapa	ration mode	control high								
3	WGM22	WGM22 and WGM	20 WGM21	l together fo	n. rm the waveform	generation mo	de control WG	M2 [2: 0] the co	ntrol meter			
		Count counting meth	nod and way	eform gener	ation mode, see t	the waveform g	generation mode	e table description	n.			
2	CS22	TC2 clock selection	control high	1.			-	ŕ				
		Used to select the cl	ock source f	for Timer 2.								
1	CS21	TC2 clock selection	control bit.									
		Used to select the clo	ock source f	for Timer 2.								
0	CS20	TC2 clock select cor	ntrol low.									
		Used to select the clo	ock source f	for Timer 2.								
		CS2	[2: 0]			desc	ription					
			0			No clock sourc	e, stop countin	g				
			1			clk	12s					
			2		c	lk 12s / 8, from p	orescaler					
			3		cl	k 128 / 32, from	prescaler					

LGT8FX8D Series - Programming Manual 1.0.5

4 5

6

7

- 122 -

clk $_{\rm t2s}$ / 64, from prescaler

clk 12s / 128, from prescaler

clk 12s / 256, from prescaler

clk 12s / 1024, from prescaler

Page 129

The following table shows the non-PWM mode (ie, normal mode and CTC mode), compare the output mode to the output compare waveform control.

	Table 2 OC2x Compare Output Mode Control in Non-PWM Mode
COM2x [1: 0]	description
0	OC2x disconnect, general IO port operation
1	Match the OC2x signal when comparing the match
2	The OC2x signal is cleared when compare match
3	The OC2x signal is set when the compare match

The following table shows the control of the output compare waveform for the compare output mode in fast PWM mode.

	Table 3 OC2x Compare Output Mode Control in Fast PWM Mode
COM2x [1:0]	description
0	OC2x disconnect, general IO port operation
1	Keep it
2	The OC2x signal is cleared when the compare match is set and the OC2x signal is set when the maximum match is made
3	The OC2x signal is set when the compare match is cleared and the OC2x signal is cleared when the maximum match is made

The following table shows the control of the output compare waveform for the compare output mode in phase correction mode.

	Table 4 Phase Correction PWM Mode OC2x Compare Output Mode Control
COM2x [1:0]	description
0	OC2x disconnect, general IO port operation
1	Keep it
2	The OC2x signal is cleared when the compare match is cleared in the ascending count, and the OC2x signal is set at the compare match
3	The OC2x signal is set when the compare match is set in the ascending count, and the OC2x signal is cleared when the compare match is cleared

The following table shows the waveform generation mode control.

Table 5 Waveform Generation Mode Control

WGM2 [2:0]	Operating mode	TOP value	Update OCR2x at all times	Set TOV2 at all times
0	Normal	0xFF	immediately	MAX
1	PCPWM	0xFF	TOP	BOTTOM
2	CTC	OCR2A	immediately	MAX
3	FPWM	0xFF	TOP	MAX
4	Keep it	-	-	-
5	PCPWM	OCR2A	TOP	BOTTOM
6	Keep it	-	-	-
7	FPWM	OCR2A	ТОР	TOP

- 123 -

Page 130

LGT8FX8D Series - Programming Manual 1.0.5 LogicGreen Technologies Co., LTD

TCNT2 -TC2 count value register

TCNT2 - TC2 count register

Address: 0xB2 Default: 0x00

Bit 7 6 5 4 3 2 1 0

Name TCNT27 TCNT25 TCNT25 TCNT23 TCNT23 TCNT21 TCNT21 TCNT20

R / W \mathbf{R} / \mathbf{W} \mathbf{R} / \mathbf{W} \mathbf{R} / \mathbf{W} \mathbf{R} / \mathbf{W} \mathbf{R} / \mathbf{W} R / W \mathbf{R} / \mathbf{W} \mathbf{R} / \mathbf{W} Initial 0 0 0 0 0 0 0 0

Bit	Name	description
		TC2 count register.
		Through the TCNT2 register can be directly on the counter 8 for the count value to read and write access.
		The CPU writes to the TCNT2 register will prevent the compare match from occurring during the next timer clock cycle
		Health, even if the timer has stopped. This allows the value of the TCNT2 register to be initialized with the value of OCR2
7:0	TCNT2	So that no interruptions are caused.
		If the value written to TCNT2 equals or bypasses the OCR2 value, the comparison match is lost, resulting in incorrect
		The resulting waveform results.
		The timer stops counting when no clock source is selected, but the CPU can still access TCNT2. CPU write counter
		Has a higher priority than zeroing or addition and subtraction.
OCR2	A - TC2 Out	put Compare Register A

OCR2A - TC2 Output Compare Register A												
Address	0xB3				Default: 0x0	0						
Bit	7	6	5	4	3	2	1	0				
Name OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0												
\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}								
Initial	0	0	0	0	0	0	0	0				
Bit	Name				description							
		TC2 Output Compare Register A.										
		The OCR2A contains an 8-bit data that is continuously compared with the counter value TCNT2. Compare match										
		Can be used to generate an output compare interrupt, or to generate a waveform on the OC2A pin.										
		When using PWN	I mode, the OC	R2A register u	ses a double bu	ffered register.	While the norm	al working mode and	1 match			
7·0 OC	R2A	With clear mode, double buffering is disabled. Double buffering can be undated with OCR2A register with count										
		Maximum or min	imum moments	to prevent asy	mmetrical PWN	A pulses from h	eing generated	eliminating interfere	ence			
		pulsa				- p						
		puise.										
		When using the d	ouble buffering	function, the C	CPU accesses th	e OCR2A buff	er register, whe	n the dual buffering f	unction is disabled.			
		Asked about OCF	Asked about OCR2A itself.									

- 124 -

Page 131

LGT8FX8D Series - Programming Manual 1.0.5						LogicGr	een Technolog	ies Co., LTD		
OCR2	B - TC2 Out	put Compare F	Register B							
			<i>OCR2B</i> - T(C2 Output Corr	npare Register I	3				
Address: 0x	:B4				Default: 0x00)				
Dit	7	6	5	4	2	2	1	0		
ы	/	0	3	4	3	2	1	0		
Name	OCR2B7	OCR2B6 OC	R2B5 OCR2B	4 OCR2B3 OC	R2B2 OCR2B1	I OCR2B0				
R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W		
Initial	0	0	0	0	0	0	0	0		
Bit	Name				description					
		TC2 Output Compare B register.								
		The OCR2B contains an 8-bit data that is continuously compared with the counter value TCNT2. Compare horses								
		Can be used to	generate an out	put compare in	terrupt, or to ge	enerate a wavefo	orm on the OC2	2B pin.		
	0.000	When using PW	/M mode, the 0	OCR2B register	r uses a double	buffered registe	r. While the nor	rmal working mode	and match	
7:0	OCR2B	With clear mod	e, double buffe	ring is disabled	l. Double buffer	ring can be upda	ated with OCR2	B registers with cou	int	
		Maximum or m	inimum mome	nts, thereby pre	eventing the ger	neration of asym	nmetric PWM p	ulses, eliminating th	e need for dry	
		Disturbing puls	es. When using	the double but	ffering function	, the CPU acces	sses the OCR2E	buffer register, whi	ch inhibits double buffering	

When the CPU can access the OCR2B itself.

TIM	SK2 - TC2	interrupt mask re	gister								
			TIMSK2 -	FC2 interrupt n	nask register						
Address:	0x70				Default: 0x	00					
Bit	7	6	5	4	3	2	1	0			
Name	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2			
R / W	-	-	-	-	-	R / W	R / W	R / W			
Initial	0	0	0	0	0	0	0	0			
Bit	Name				description						
7: 3		Keep it.									
2	OCIE2B	TC2 Output Compa When the OCIE2B I When an OCF2B bi When the OCIE2B I	re B Match Inte bit is set to "1" t is set in TIFR bit is "0", the T	errupt Enable b and the global 2, an interrupt C2 output com	it. interrupt is se is generated. pare B match	t, the TC2 output interrupt is disab	compares the E led.	8 match interrup	enable. When	the match is n	natched
1	OCIE2A	TC2 Output Compa When the OCIE2A Occurs when the OC When the OCIE2A	re A Match Into bit is "1" and th CF2A bit in TII bit is "0", the T	errupt Enable b e global interro R2 is set, the i C2 output com	oit. upt is set, the nterrupt is gen pare A match	TC2 output comp nerated. i interrupt is disab	ares the A matc	h interrupt enab	le. When the m	natch is matche	ed
0	TOIE2	TC2 overflow interr When the TOIE2 bit When the TOV2 bit	upt enable bit. t is "1" and the is set, the inter	global interrup rupt is generate	ot is set, the To	C2 overflow inter TOIE2 bit is "0",	rupt is enabled. the TC2 overflo	When TC2 over	flows, ie TIFR isabled.	2	

- 125 -

Page 132

LGT8FX8D Series - Programming Manual 1.0.5					LogieGreen Technologies Co., LTD					
TIFR	2 - TC2 int	errupt flag regis	ter							
			TIFR2 - 1	FC2 interrupt fl	ag register					
Address: 0	x37			Å	Default: 0x	00				
Bit	7	6	5	4	3	2	1	0		
Name	-	-	-	-	-	OCF2B	OCF2A	TOV2		
\mathbf{R} / \mathbf{W}	-	-	-	-	-	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name				description	1				
7:3	-	Keep it.								
		TC2 Output Con	npare B match f	lag.						
		When TCNT2 is equal to OCR2B, the compare unit gives the match signal and sets the compare flag OCF2B. If								
2	OCF2B	At this time, the output compare B interrupt enable OCIE2B to "1" and the global interrupt flag is set, the output ratio is generated								
		More than B interrupted. OCF2B is automatically cleared when writing to this interrupt service routine, or "1" for OCF2B bit								
		This bit can be cl	eared.							
		TC2 Output Con	pare A match f	lag.						
		When TCNT2 is	equal to OCR2	A, the compare	unit gives the	e match signal an	d sets the comp	are flag OCF2A. If		
1	OCF2A	At this time, the	output compare	A interrupt ena	able OCIE2A	to "1" and the glo	obal interrupt fla	ag is set, the output ratio	is generated	
		Than A interrupt. OCF2A is automatically cleared when writing to this interrupt service routine, or "1" for OCF2A bit						t		
		This bit can be cl	eared.							
		TC2 overflow fla	ıg.							
		When the counte	r overflows, set	the overflow f	lag TOV2. If	the overflow inte	rrupt enable TO	IE2 is "1"		
0	TOV2	And the global in	terrupt flag is s	et, an overflow	interrupt is g	enerated. TOV2	is automatically	executed when this inte	rrupt service routine is exe	ecuted
		Clear this bit or v	write "1" to the	TOV2 bit.						

LogicGreen Technologies Co., LTD

- 126 -

Page 133

LGT8FX8D Series - Programming Manual 1.0.5

SPI serial peripheral interface

- Full-duplex, three-wire synchronous data transmission
- · Host or slave operation
- The least significant or most advanced bit is transmitted first
- 7 programmable bit rates
- Send end interrupt flag
- Write conflict flag protection mechanism
- · wake-up from idle mode
- The host operation has speed mode
- Supports host two-wire input mode

Summary

SPI mainly consists of three parts: clock prescaler, clock detector, slave select detector, transmitter and receiver Device. The control and status registers are shared by these three parts. The clock prescaler works only in the master operating mode by bit Rate control bit to select the division factor, resulting in the corresponding frequency division clock, the output to the SPCK pin. Clock detector only Work in slave operation mode, detect the clock edge input from the SPCK pin, according to the SPI data transfer mode Send and receive shift register for shift operation. The slave selection detector detects the slave selection signal SPSS Transmission status to control the operation of the transmitter and receiver. The transmitter consists of a shift register and transmit control logic. The receiver consists of a shift register, a receive buffer, and receive control logic.

Page 134

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Clock generation

Clock generation logic is divided into host clock prescaler and slave clock detector, respectively, in the host operation and from the machine Mode. The clock prescaler selects the division factor from the bit rate control bit and the speed control bit, resulting in the corresponding frequency division Clock (a total of 7 kinds of optional frequency division coefficient, see the register description for details), output to the SPCK pin for communication Clock, while providing a shift clock for the internal transmit and receive shift registers. The clock detector performs edge on the input clock SPCK Along the detection, according to the SPI data transfer mode on the transmitter and receiver shift operation. To ensure positive for the clock signal Sampling, SPCK clock high and low width must be greater than 2 system clock cycles.

Send and receive

The SPI module supports both simultaneous transmission and reception in single-wire mode, and only supports dual-line reception in dual-line mode.

Single line send and receive

SPI host will need to communicate from the slave select signal SPSS pulled low, you can start a transmission process. Host and slave Will need to transfer the data ready, the host clock signal SPCK generate clock pulses to exchange data, the host data Removed from the MOSI, moved from the MISO, the slave data from the MISO removed, moved from the MOSI, after the exchange of data after the host Pull the SPSS signal to complete the communication.

When configured as a master, the SPI module does not control the SPSS pin and must be handled by the user software. Software pulls down SPSS Pin, select the slave to communicate, start the transmission. The software will need to transfer the data to the SPDR register when it is started Clock generator, the hardware generates the clock of the communication, and moves the 8-bit data out of the slave, while moving the slave data into the slave. Shift After a byte of data, the clock generator is stopped and the transmit completion flag SPIF is set. The software can write the data again SPDR register to continue transmitting the next byte, or you can pull the SPSS signal to end the current transfer. The last number Will be stored in the receive buffer.

When configured as a slave, the SPI module will remain asleep as long as the SPSS signal is always high and keep the MISO Feet for the three states. The software can update the contents of the SPDR register. Even if there is an input clock pulse on the SPCK pin at this time, SPDR data will not be removed until the SPSS signal is pulled low. When a byte of data is transferred, the hardware is done Set the transmission completion flag SPIF. At this point the software to read the data before moving to the SPDR register to continue to write data, The last incoming data will be stored in the receive buffer.

The SPI module has only one buffer in the transmit direction and two buffers in the receive direction. When sending data, one Wait until the shift process is complete before writing to the SPDR register. And in the receiving data, the need for The next byte before the end of the shift process by accessing the SPDR register to read the received characters, otherwise the previous word Section will be lost.

Host two-wire reception

SPI module two-line mode is only effective in the host operating mode, and the single-line mode is different MOSI and MISO are For the host to receive data, each SPCK clock pulse simultaneously receives 2 bits of data (the data on the MISO line is Before the data on the MOSI line is on), after receiving the two bytes of data, the hardware sets the transmission completion flag SPIF, the data Saved to the receive buffer and shift register. At this point the software must read the SPDR register twice to get the two received

Byte of data. It should be noted that, although the two-line mode, the host does not send data to the slave, the software still need to SPDR Register write data to start the clock generator to generate the communication clock, write once the SPDR register to receive two bytes

- 128 -

Page 135

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The data.

Data pattern

Single-line mode, SPI relative to the serial data, there are four SPCK phase and polarity combination, by the CPHA and CPOL To control, as shown in the following table.

		CPHA and CPOL Select	the data transfer mode	
CPOL	CPHA	Starting along	End the edge	SPI mode
0	0	Sampling (rising edge)	Set (falling edge)	0
0	1	Set (rising edge)	Sampling (falling edge)	1
1	0	Sampling (falling edge)	Set (rising edge)	2
1	1	Set (falling edge)	Sampling (rising edge)	3

When CPHA = 0, the data samples and set the clock edge as shown below:

SPCK (CPOL = 0)	
SPCK (CPOL = 1)	
MISO / MOSI Sample	
MOSI Setup	
MISO Setup	
SPSS	
MSB First (DORD = 0)	MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB First (DORD = 1)	LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

CPHA is "0" when SPI data transfer mode

When CPHA = 1, the data samples and set the clock edge as shown below:

SPCK (CPOL = 0)	
SPCK (CPOL = 1)	
MISO / MOSI Sample	
MOSI Setup	
MISO Setup	
SPSS	
MSB First (DORD = 0)	MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB First (DORD = 1)	LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

CPHA is "1" when SPI data transfer mode

Two-wire mode, MISO and MISO are used as host input, the data sampling time is still determined by the data transmission mode,

- 129 -

LogicGreen Technologies Co., LTD

LGT8FX8D Series - Programming Manual 1.0.5

Sampling as shown below:

MISO / MOSI Sample								
MSB First (DORD = 0)								
MISO	MSB	Bit 5	Bit 3	Bit 1	MSB	Bit 5	Bit 3	Bit 1
MOSI	Bit 6	Bit 4	Bit 2	LSB	Bit 6	Bit 4	Bit 2	LSB
LSB First (DORD = 1)								
MISO	LSB	Bit 2	Bit 4	Bit 6	LSB	Bit 2	Bit 4	Bit 6
MOSI	Bit 1	Bit 3	Bit 5	MSB	Bit 1	Bit 3	Bit 5	MSB

Bit mode when the DUAL is "1" when the SPI data sampling mode

SPSS pin function

When configured as a slave, the slave select signal SPSS pin is always used as input. When the SPSS pin remains low, the SPI is connected The port is activated, the MISO pin becomes the output pin (the software performs the corresponding port configuration), and the other pins are input. When SPSS When the pin is held high, the SPI module is reset and no longer receives data. The SPSS pin is very synchronous for packet / byte synchronization It is useful to synchronize the slave's bit counter with the host's clock generator. When SPSS is pulled high, the SPI slave is immediately reset Receive and send logic, and discard the incomplete data in the shift register.

When configured as a host, the user software can determine the direction of the SPSS pin.

If SPSS is configured as an output, it can be used to drive the slave's SPSS pin. If SPSS is configured as an input, it must be maintained High to ensure the normal work of the host. When configured as a master and the SPSS pin is an input, the external circuit pulls down the SPSS pin, The SPI module will consider another host to select itself as a slave and start transmitting data. To prevent bus conflicts, SPI The module will do the following:

1. Clear the MSTR bit in the SPCR register, convert to slave, so MOSI and SPCK become input;

2. Set the SPIF bit in the SPSR register. If the interrupt is enabled, an SPI interrupt is generated.

Therefore, when interrupts are used to process the data transfer of the SPI host and there is a possibility that the SPSS is pulled down, the interrupt service The program should check whether the MSTR bit is "1". If cleared, the software must set it to re-enable SPI master mode.

SPI initialization

The SPI is first initialized before communication is performed. The initialization process usually includes the choice of host slave operation, data transfer The setting of the input mode, the selection of the bit rate, and the direction control of the respective pins. Where the host and slave operate under the pin side The controls are different, as shown in the following table:

	Pin direction control	
Pin	The direction of the host mode	Slave mode direction
MOSI	User software definition	enter
MISO	enter	User software definition
SPCK	User software definition	enter
SPSS	User software definition	enter

- 130 -

Page 137

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

SPI host initialization

The SPI host mode initialization process is as follows:

1. Set the MSTR bit, set the bit rate selection control bit, data transfer mode, data transfer order, interrupt enable or not,

As well as double-line enabled or not;

2. Set the MOSI and SPCK pins to output;

https://translate.googleusercontent.com/translate f

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

3. Set the SPE bit.

In host mode, the SPSS pin can be set to output when the SPI module is not desired to be used as a slave by another host.

SPI slave initialization

The SPI slave mode initialization process is as follows:

1. Clear the MSTR bit, set the data transfer mode, data transfer order, interrupt enable or not;

2. Set the MISO pin to output;

3. Set the SPE bit.

. Set the St E

Register definition

		SPI register list	
register	address	Defaults	description
SPCR	0x4C	0x00	SPI control register
SPSR	0x4D	0x00	SPI status register
SPDR	0x4E	0x00	SPI data register

SPCR - SPI control register

			SPCR -	- SPI control re	gister			
Address: 0x4	С			I	Default: 0x00			
Bit	7	6	5	4	3	2	1	0
Name	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W	$\mathbf{R} \ / \ \mathbf{W}$	R / W	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}
Initial	0	0	0	0	0	0	0	0

Bit Name Description

		SPI interrupt enable bit.
7	CDIE	The SPI interrupt is enabled when the SPIE bit is set to "1". The SPIF bit located in the SPSR register is set
/	SPIE	And the global interrupt is enabled, an SPI interrupt is generated.
		When the SPIE bit is set to "0", the SPI interrupt is disabled.
		SPI enable bit.
6	SPE	The SPI module is enabled when the SPE bit is set to "1". The SPE must be set before any SPI operation.
		When the SPE bit is set to "0", the SPI module is disabled.
5	DOR	Data order control bit.
	D	When the DORD bit is set to "1", the LSB of the data is transmitted first.

- 131 -

Page 138

LGT8FX8D Series - Programming Manual 1.0.5	

		When the DORD bit is set to "0", the MS	B of the data is transmitted first.	
		Host Slave Selects the control bit.		
		When the MSTR bit is set to "1", the host	t mode is selected.	
4	MSTR	When the MSTR bit is set to "0", the slav	re mode is selected.	
		In master mode, when the SPSS pin is co	nfigured as an input and is pulled low, the M	ISTR bit is cleared to the SPSR register
		The SPIF of the device is set and the user	must reset the MSTR into host mode.	
		Clock polarity control bit.		
		When the CPOL bit is set to "1", SPCK is	s high in the idle state.	
		When the CPOL bit is set to "0", SPCK is	s low in the idle state.	
3	CPOL			
		CPOL	Starting along	End the edge
		0	Rising edge	Falling edge
		1	Falling edge	Rising edge

LogicGreen Technologies Co., LTD

CPHA clock phase control bit.
When the CPHA bit is set to "1", the start edge sets the data and ends the edge of the sampled data.

When the CPHA bit is set to "0", the start edge is sampled and the edge edge sets the data.

СРНА	Starting along	End the edge
0	sampling	Set up
1	Set up	sampling

1 SPR1 clock rate selection bit 1.

2

SPR1 and SPR0 are used to select the SPI transfer clock rate. See the SPCK and the system clock for specific control Form form.

0 SPR0 Clock Rate Select bit 0.

SPR1 and SPR0 are used to select the SPI transfer clock rate. See the SPCK and the system clock for specific control Form form.

SPSR - SPI status register

	SPSR - SPI status register								
Address: 0x4D					Default: 0x00				
Bit	7	6	5	4	3	2	1	0	
Name	SPIF	WCOL	-	-	-	DUAL	-	SPI2X	
$\mathbf{R} \ / \ \mathbf{W}$	R	R	R	R	R	\mathbf{R} / \mathbf{W}	R	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	

Bit Name description

		SPI interrupt flag.
		After the serial transmission is set, the SPIF flag is set. In the host mode, when the SPSS pin is configured as input and pulled low,
7 SPIF		SPIF will also be set. If the SPTER bit and the global interrupt enable bit of the SPCR register are set, the SPI is set
		Interrupt generated. After entering the interrupt service routine, the SPIF bit is automatically cleared, or by first reading the SPSR register
		Access the SPDR register to clear the SPIF bit.
,	WGOI	Write conflicting flag.
6 WCOL	WCOL	Writing to the SPDR register during data transfer will set the WCOL bit. The WCOL bit can be read by first

- 132 -

Page 139

LGT8FX8I) Series - Pro	ogramming Manual 1.0.5 Lo	gicGreen Technologies Co., LTD
		The SPSR register then accesses the SPDR register to clear.	
5	-	Keep it.	
4	-	Keep it.	
3	-	Keep it.	
		Two-wire mode control bit.	
		When the DUAL bit is set to "1", the SPI 2-wire transmission mode is enab	oled.
2	DUAL	When the DUAL bit is set to "0", the SPI 2-wire transfer mode is disabled.	
		The two-wire transfer mode is valid only in SPI master mode. Both MISO	and MOSI are used as host data inputs.
		According to the transmission mode see the host dual-line reception and da	ta mode section description.
1	-	Keep it.	
		SPI speed control bit.	
		When the SPI2X bit is set to "1", the SPI transmission speed is doubled.	
0	SPI2X	When the SPI2X bit is set to "0", the SPI transmission speed is not doubled	
		Refer to SPCK and the system clock for the specific control mode.	

The following table shows the relationship between SPCK and the system clock.

The relationship between SPCK and the system clock

SPI2X	SPR1	SPR0	SPCK frequency
0	0	0	$f_{sys}/4$
0	0	1	f _{sys} / 16
0	1	0	f sys / 64

0 1	$\begin{array}{c} 1\\ 0\end{array}$	$\begin{array}{c} 1\\ 0\end{array}$	$\frac{f_{sys} / 128}{f_{sys} / 2}$
1	0	1	f _{sys} / 8
1	1	0	f _{sys} / 32
1	1	1	f _{sys} / 64

SPDR - SPI data register

	SPDR - SPI data register							
Address: 0x	4E	Default: 0x00						
Bit	7	6	5	4	3	2	1	0
Name	SPDR7	SPDR6	SPDR5	SPDR4	SPDR3	SPDR2	SPDR1	SPDR0
\mathbf{R} / \mathbf{W}								
Initial	0	0	0	0	0	0	0	0
Bit Name					description			

SPI sends and receives data 7:0 SPDR SPI sends data and receives data to share SPI data register SPDR. Writing data to SPDR is written to send The data shift register reads the data from the SPDR that reads the receive data buffer.

- 133 -

Page 140

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

USART0 - Universal Synchronous / Asynchronous Serial Transceiver

- Full-duplex operation (independent serial receive and transmit registers)
- · Asynchronous or synchronous operation
- Host or slave operation
- High-precision baud rate generator
- Supports 5, 6, 7, 8, or 9 data bits and 1, or 2 stop bits
- Hardware-enabled parity generation and verification mechanisms
- Data overspeed detection
- · Frame error detection
- Noise filtering, including erroneous start bit detection and digital low-pass filter
- Three independent interrupts: Transmit end interrupt, transmit data register empty interrupt, and receive end interrupt
- Multi-processor communication mode
- Asynchronous communication mode

Summary

UBRR	UCSRC	UCSRB	UCSRA	
Baud Rate Generator		elkio	Clock Generator	
		Sync	Pin Mux	ХСК
			Receiver	
	R	Clock ecovery		
DV (110		Data	Pin Mux	RxD

RX Shift

USART structure diagram

The USART mainly consists of three parts: a clock generator, a transmitter and a receiver. The control and status registers are made up of these three parts shared. The clock generator consists of the synchronization logic of the external input clock from the baud rate generator and the synchronous slave operating mode.

- 134 -

Page 141

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The XCK pin is used only for synchronous transfer mode. The transmitter includes a write data buffer, a serial shift register, and a parity occurs And the control logic required to handle different frame formats. The write data buffer allows continuous transmission of data without being in the data frame Between the introduction of delay. The receiver has a clock and data recovery unit for reception of asynchronous data. In addition to the recovery unit, receive The device also includes parity, control logic, serial shift register and a two-stage receive buffer UDR. Receiver support with The transmitter has the same frame format, and can detect frame errors, data overspeed and parity errors.

Clock generation

The clock generation logic generates the base clock for the transmitter and receiver. The USART supports four modes of clock: normal asynchronous mode Type, speed asynchronous mode, host synchronization mode, and slave synchronization mode. The UCREL bit of USCRC is used to select the same Step or asynchronous mode. The U2X bit of USCRA controls the speed enable in asynchronous mode. Valid only in synchronous mode XCK The data direction register (multiplexed with IO) of the pin determines whether the clock source is generated internally (host mode) or externally (from Machine mode).

Baud rate generator

The baud rate register UBRR and the down-count counter are connected together as a programmable prescaler or baud rate for the USART Generator. The descending counter operates under the system clock (f sys) and is automatically incremented when its count is zero or the UBRRL register is written The value of the UBRR register is set. When the count to zero to produce a clock, the clock as the baud rate generator output clock, The frequency is $f_{sys} / (UBRR + 1)$.

The following table shows the formulas for calculating baud rates (bits per second) and UBRR values in various operating modes.

Operating mode	Baud rate calculation formula (1)	UBRR value calculation formula
Asynchronous normal mode	$BAUD = f_{sys} / (16 * (UBRR + 1))$	UBRR = $f_{sys} / (16 * BAUD) - 1$
Asynchronous speed mode	$BAUD = f_{sys} / (8 * (UBRR + 1))$	UBRR = $f_{sys} / (8 * BAUD) - 1$
Synchronous host mode	$BAUD = f_{sys} / (2 * (UBRR + 1))$	UBRR = $f_{sys} / (2 * BAUD) - 1$

Description:

1. The baud rate is defined as the bit transfer rate (bps) per second;

2. BUAD is the baud rate, f sys is the system clock, and UBRR is the combination value of the baud rate register UBRRH and UBRRL.

Speed mode of operation

By setting the U2RA bit in the UCSRA register, it is possible to double the transfer rate, which is valid only in asynchronous mode Set this bit to "0" in step mode.

Setting this bit will halve the division of the baud rate divider, effectively doubling the transfer rate of asynchronous communication. In this case , The receiver uses only half the number of samples to sample and clock the data, requiring a more accurate baud rate

Set and system clock. The transmitter does not change.

External clock

The synchronous slave operating mode is driven by an external clock. The external clock passes through the sync register and the edge detector before being sent by the transmitter And the receiver is used, this process will introduce the delay of the two system clocks, so the maximum external clock frequency of the external XCK is given by Formula Restrictions:

- 135 -

Page 142

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

f хск <f sys / 4

Note that fsys has a system clock stability decision, in order to prevent data loss due to frequency drift, it is recommended to keep enough margin the amount.

Synchronous clock operation

In synchronous mode, the XCK pin is used for clock input (slave mode) or clock output (master mode). Clock edge with The basic rules governing the relationship between data sampling and data variation are the clock edge used for data input (RxD) sampling and data The clock edge used by the output changes is reversed.

UCPOL = 1

UCPOL = 0

XCK timing in synchronous mode

As shown in the figure above, when the UCPOL value is "1", the data output is changed on the falling edge of XCK, and on the rising edge of XCK Data is sampled; when the UCPOL value is "0", the data output is changed on the rising edge of XCK, and the number of XCK According to sampling.

Frame format

A serial data frame consists of a data word plus a sync bit (start bit and stop bit) and a parity bit for error correction. The USART accepts the following 30 combinations of data frame formats:

- 1 start bit
- 5,6,7,8 or 9 data bits
- No parity, odd parity or even parity
- ♦ 1 or 2 stop bits

The data frame starts at the start bit, followed by the least significant bit of the data word, followed by the other data bits, with the highest bit of the data word Beam, the most successful transmission of 9-bit data. If parity is enabled, the parity bit will be followed by the data word, and finally the stop bit. when After a complete data frame is transmitted, the next new data frame can be transmitted immediately or the transmission line is idle (high Flat state). The following figure shows the possible data frame structure, and the bits in square brackets are optional.

Description:

USART frame structure

- 136 -

Page 143

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

1) There is no data transmission on the IDLE communication line (RxD or TxD) and must be high when the line is idle

2) St start bit, always low

3) 0-8 data bits

4) P parity, odd parity or even parity

5) Sp stop bit, always high

The structure of the data frame is set by UCSZB and UCSZ [2: 0], UPM [1: 0] and USBS in the UCSRB register. Receive and send Send using the same settings. Any changes made may destroy the ongoing data transfer. Among them, UCSZ [2: 0] is determined The data bits of the data frame, UPM [1: 0] is used to enable and determine the type of parity, USBS sets the frame with one or two bits Beam position. The receiver will ignore the second stop bit, so the frame error is detected only when the first end bit is "0".

Check bit calculation

The parity bit is calculated by XORing the bits of the data. If odd parity is selected, the XOR result needs to be reversed. The relationship between the parity bit and the data bits is as follows:

$$\begin{split} P_{\text{the even}} &= D_{n-1} \oplus \dots \oplus d_{-3} \oplus d_{-2} \oplus d_{-1} \oplus d_{0} \oplus 0 \\ P_{\text{ODD}} &= D_{n-1} \oplus \dots \oplus d_{-3} \oplus d_{-2} \oplus d_{-1} \oplus d_{0} \oplus 1 \end{split}$$

Description:

P even Even check results
 P odd odd parity results
 d n nth data bits

The USART is initialized

The USART should be initialized before communication. The initialization process usually includes the baud rate setting, the frame structure Set, and enable receivers or transmitters as needed. For interrupt-driven USART operations, clear during initialization Zero global interrupt flag and disables all interrupts for the USART.

When performing a re-initialization such as changing the baud rate or frame structure, it is necessary to ensure that no data is transmitted. TXC flag can be used To detect whether the transmitter has completed all transmissions, the RXC flag can be used to detect whether there is data in the receive buffer Read out. If the TXC flag is used for this purpose, it must be cleared before each data is sent (before writing the UDR register) Zero TXC flag.

LogicGreen Technologies Co., LTD

Transmitter

Setting the TXEN bit of the UCSRB register will enable data transmission for the USART. Enable the general IO function of the TxD pin Replaced by the USART function, becomes the serial output of the transmitter. Before sending data to set the baud rate, work mode With frame format. If the synchronous transmit mode is used, the clock signal applied to the XCK pin is the clock for data transmission.

Send 5 to 8 frames for data

Will need to send the data loaded into the send buffer to start the data sent. The CPU loads the number by writing to the UDR register according to. When the transmit register can send a new frame of data, the data in the buffer will be transferred to the shift register. When the shift register is in the idle state (no ongoing data transfer), or the last stop of the previous frame data When the bit is sent, it will load the new data. Once the shift register has loaded the new data, it will pass in the established settings Lose a complete frame.

- 137 -

Page 144

LGT8FX8D Series - Programming Manual 1.0.5

A frame that sends 9-bit data

If the 9-bit data frame is sent, the ninth bit of the data should be written to the TXB8 bit in register UCSRB and then low The bit data is written to the transmit data register UDR. The 9th bit data is used in the multi-machine communication to represent the address frame in synchronous communication Can be used for protocol processing.

Send parity bit

The parity generation circuit generates the corresponding parity bit for the serial data frame. When the parity bit is enabled (UPM1 = 1), send control The logic circuit inserts the parity bit between the last bit of the data word and the first stop bit.

Send flag and interrupt processing

The USART transmitter has two flags: the USART data register empty flag UDRE and the transmission end flag TXC, two Ambitions can be interrupted.

The data register empty flag UDRE is used to indicate whether the transmit buffer can write a new data. The bit is in the send buffer When the space is set to "1", the full time is set to "0". When the UDRE bit is "1", the CPU can write to the data register UDR New data, and vice versa.

When the data register empty interrupt enable bit UDRIE in the UCSRB register is "1", as long as the UDRE is set (and all Disable), the USART data register will generate an empty interrupt request. Writing to the register UDR will be cleared UDRE. When transmitting data in an interrupt mode, a new number must be written in the data register empty interrupt service routine To the UDR to clear the UDRE, or to disable the data register from being interrupted. Otherwise once the interrupt service routine ends, A new interrupt will be generated again.

When the entire data frame is shifted out of the transmit shift register and there is no new data in the transmit register, the transmit end flag TXC will be set. When the transmit end interrupt enable bit, TXCIE (and global interrupt enable) on UCSRB, is set to "1", With the TXC flag set, the USART transmit end interrupt will be executed. Once the interrupt service routine is entered, the TXC flag bit It is automatically cleared, the CPU can also write "1" to the bit to clear.

Disable the transmitter

When TXEN is cleared, only after all the data have been sent to send the transmitter can be really prohibited, that is, send shift send There is no data to be transferred in both the register and the transmit buffer register. After the transmitter is disabled, the TxD pin resumes its general purpose IO work can.

receiver

Set the receive enable bit (RXEN) of the UCSRB register to start the USART receiver. Enabled after the RxD pin is generic The IO function is replaced by the USART function as the serial input of the receiver. Be sure to set up the data before receiving it Baud rate, operating mode and frame format. If the synchronous receive mode is used, the clock on the XCK pin is used as the transmit clock.

A frame that receives 5 to 8 bits of data

Once the receiver has detected a valid start bit, it begins to accept the data. Each bit of data after the start bit will be set Set the baud rate or XCK clock to receive until the first stop bit of a frame of data is received and the second stop bit is Receiver ignored. Each bit of data received is sent to the receive shift register. After receiving the first stop bit, the receiver Set the RXC bit in the receive data completion flag of the UCSRA register and transfer the complete data frame in the shift register

- 138 -

Page 145

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

In the receive buffer, the CPU can obtain the received data by reading the UDR register.

A frame that receives 9-bit data

If a 9-bit data frame is set, the register UCSRB must first be read before reading the lower 8-bit data from the UDR RXB8 bits to get the 9th bit of data. This rule also applies to the status flags FE, DOR, and PE. Read the UDR The memory cell changes the state of the receive buffer and changes the TXB8, FE, DOR, and PE that are also stored in the buffer Bit.

Receive end flag and interrupt handling

The USART receiver has a flag: the receive end flag RXC, which indicates whether the receive buffer has an unread data. This bit is "1" and "0" when the receive buffer has data that is not read. If the receiver is disabled, The receive buffer is refreshed and RXC is cleared.

Set the receive enable interrupt enable bit RXCIE after UCSRB, as long as the RXC flag is set (and the global interrupt is enabled) The USART reception end interrupt is generated. When data is received using the interrupt mode, the data reception ends the interrupt service routine The sequence must read the data from the UDR to clear the RXC flag, otherwise a new interrupt will be completed as soon as the interrupt handler ends Will produce.

Receive error flag

The USART receiver has three error flags: frame error FE, data overflow DOR, and parity error PE. They are all located UCSRA register. The error flag is stored in the receive buffer along with the data frame. All the wrong signs can not be produced Interrupted.

The frame error flag FE indicates the state of the first stop bit of the next readable frame stored in the receive buffer. Stop bit is positive (The value is "1"), the FE flag is "0", otherwise the FE flag is "1". This flag can be used to detect loss of synchronization The interrupt is also available for protocol processing.

The data overflow flag DOR indicates that data loss is caused by the receive buffer. When the receive buffer is full, receive the shift The data already exists in the register, and if a new start bit is detected at this time, a data overflow is generated. The DOR flag is set to that Indicating that one or more data frames have been lost between the most recent read UDR and the next read UDR. When the data frame is successful The DOR flag is cleared after shifting from the shift register to the receive buffer.

The parity error flag PE indicates that the next frame of data in the receive buffer has a parity error at reception. If no parity is enabled Check, PE is cleared.

Parity checker

Setting the parity mode bit UPM1 will start the parity checker. The calibration mode (even parity or odd parity) is determined by UPM0 set. After the parity is enabled, the validator will calculate the parity of the input data and compare the result to the parity bit of the data frame. The check result will be stored in the receive buffer along with the data and stop bits. The CPU checks the received frame by reading the PE bit Whether there are parity errors. If the next data read from the receive buffer has a parity error, and the parity Yes, the UPE is set and is always valid until the receive buffer UDR is read.

Disable the receiver

It is forbidden for the receiver to function immediately compared to the transmitter. The data being received will be lost. Disable receiver (RXEN clear)

- 139 -

Page 146

LGT8FX8D Series - Programming Manual 1.0.5

, The receiver will no longer occupy the RxD pin and the receive buffer will be refreshed.

Asynchronous data reception

The USART has a clock recovery unit and a data recovery unit to handle asynchronous data reception. The clock recovery logic is used to synchronize from The RxD pin inputs the asynchronous serial data and the internal baud rate clock. Data recovery logic is used to collect data and pass low The filter filters the input of each bit of data, thereby improving the receiver's anti-jamming performance. Asynchronous reception by the scope of work Depending on the accuracy of the internal baud rate clock, the rate of the frame input, and the number of data bits contained in one frame.

LogicGreen Technologies Co., LTD

Asynchronous working range

The operating range of the receiver depends on the degree of mismatch between the received data rate and the internal baud rate. If the sender to Too fast or too slow bit rate to transmit data, or the baud rate generated within the receiver does not have the same frequency, then the receiver It can not be synchronized with the start bit. To ensure that the receiver does not miss the sampling of the next frame start bit, the data input rate and the internal The baud rate of the receiver can not be too large, and the ratio between them is used to describe the baud rate error range. The following two tables are divided Do not give the maximum permissible baud rate error range in normal mode and double speed mode.

The maximum receiver baud rate error range in normal mode

Data bit + parity bit length and Maximum error range (%) Recommended error range (%)

5	+ 6.7 / -6.8	± 3.0
6	+ 5.8 / -5.9	± 2.5
7	+ 5.1 / -5.2	± 2.0
8	+ 4.6 / -4.5	± 3.0
9	+ 4.1 / -4.2	± 1.5
10	+ 3.8 / -3.8	± 1.5

Maximum Receiver Baud Rate Error Range in Double Speed Mode

Data bit + parity bit length and	Maximum error range (%)	Recommended error range ($\%$)
5	+ 5.7 / -5.9	± 2.5
6	+ 4.9 / -5.1	± 2.0
7	+ 4.4 / -4.5	± 1.5
8	+ 3.9 / -4.0	± 1.5
9	+ 3.5 / -3.6	± 1.0
10	+ 3.2 / -3.3	± 1.0

As can be seen from the table, the baud rate in normal mode allows for a greater range of variation. The recommended baud rate error range is above Assume that the receiver and the transmitter have the same contribution to the maximum total error. Generates the receiver baud rate error There may be two reasons. First, the stability of the receiver system clock is related to the operating voltage and temperature. Using crystal to produce System clocks generally do not have this problem, but when using the internal oscillator, the system clock may be biased. The second reason The baud rate generator does not necessarily get the desired baud rate by dividing the system clock. At this time can be adjusted The value of UBRR makes the error as low as acceptable.

- 140 -

Page 147

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Baud rate setting and introduction error

For standard crystal and resonator frequencies, the baud rate for actual communication in asynchronous mode can be calculated by the baud rate calculation formula The error between it and the commonly used baud rate can be calculated using the following formula:

Error [%] = (Baud real / Baud - 1) * 100%

Among them, Baud is the commonly used communication baud rate, Baud real is calculated by calculating the baud rate, into the baud rate meter Calculate the relationship between the baud rate error and the system clock f_{sys} and the baud rate register UBRR value as follows: Normal mode:

Speed mode:

Error [%] = (f sys / (8 * (UBRR + 1)) / Baud - 1) * 100%

Error [%] = (f sys / (16 * (UBRR + 1)) / Baud - 1) * 100%

The baud rate error UBRR is obtained when the clock error on both sides of the communication is not considered, ie the system clock f sys is the standard clock The relationship between the values. The following table shows the baud rate error for different UBRR values under the 16MHz system clock.

16MHz system clock to set the UBRR value generated by the error

David anta		f sys = 16.00	0MHz			
(bps)	Normal mo	de $(U2X = 0)$	Speed mode	Speed mode ($U2X = 1$)		
	UBRR	error	UBRR	error		
2400	416	-0.1%	832	0.0%		
4800	207	0.2%	416	-0.1%		
9600	103	0.2%	207	0.2%		
14.4K	68	0.6%	138	-0.1%		
19.2K	51	0.2%	103	0.2%		
28.8K	34	-0.8%	68	0.6%		
38.4K	25	2.1%	34	-0.8%		
57.6K	16	0.2%	51	0.2%		
76.8K	12	0.2%	25	0.2%		

115.2K	8	-3.5%	16	2.1%
230.4K	3	8.5%	8	-3.5%
250K	3	0%	7	0%
0.5M	1	0%	3	0%
1M	0	0%	1	0%

Multiprocessor communication mode

The Multiprocessor Communication Mode (MPCM) bits of the UCSRA are set to enable the data frame received by the USART receiver filter. Frames with no address information will be ignored and will not be stored in the receive buffer. In a multiprocessor system, each The processor communicates over the same serial bus, which effectively reduces the number of data frames that require CPU processing the amount. The MPCM bit settings do not affect the transmitter's work, but in multiprocessor communication systems, it's used Different.

If the receiver receives a data frame length of 5 to 8 bits, the first stop bit is used to indicate that the current frame contains Is data or address information. If the length of the data frame received by the receiver is 9 bits, then it is determined by the 9th bit that the data Or address information. If the frame type flag is "1", then this is the address frame, otherwise it is a data frame.

- 141 -

Page 148

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

In multiprocessor communication mode, multiple slave processors are allowed to receive data from a host processor. First by decoding the address Frame to determine which address is addressed from the processor. The addressed slave processor will normally receive subsequent data while others The slave will ignore these data frames until the next address frame is received.

For a processor as a host, it can use the 9-bit data frame format and use the 9th bit of data to identify the frame formula. In this communication mode, the slave processor must also operate in a 9-bit data frame format. The following is the multi-processor communication mode for data exchange steps:

- 1. All slave processors are operating in multiprocessor communication mode (set MPCM);
- The host processor sends an address frame, and all slave processors receive this frame. From the RXC bit of the processor UCSRA register Normal set;
- 3. Each slave processor reads the contents of the UDR register and decodes the address frame to determine if it is selected. If selected , The MPCM bit in the UCSRA register is cleared and is not selected. Wait for MPCM to be "1" and wait for the next The arrival of an address frame;
- The addressed slave processor receives all the data frames until a new address frame is received. Not addressed from the office The processor ignores these data frames;
- After receiving the last data frame from the processor, the MPCM bit is set and the next address frame is set arrival. And then repeat from the second step.

The frame format using 5 to 8 bits of data is possible, but it is impractical because the receiver must use n and n + 1 frames Format to switch between. Since the receiver and transmitter use the same character length setting, this setting allows full duplex operation It becomes very difficult. If you use frame format of 5 to 8 bits of data, the transmitter should set two stop bits, where the first The stop bit is used to determine the frame type.

Register definition

UCSRA - USART Control and Status Register A

		UCSRA - USART Control and Status Register A								
Address: 0>	«C0	Default: 0x20								
Bit	7	6	5	4	3	2	1	0		
Name	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPME		
R / W	R	R / W	R	R	R	R	R / W	R / W		

Initial		0		0	1	0	0	0	0	0		
Bit	Name	de	escription									
		R	eceive en	d flag.								
		W	When the value of RXC is "1", it indicates that there is unread data in the receive buffer. When the value of RXC is "0"									
7	RXC	, I	Indicating that there is no unread data in the receive buffer. When the receiver is disabled, the receive buffer is refreshed and guided									
		С	Caused RXC to be cleared. When the receive end interrupt enable bit RXCIE is "1", the RXC can be used to generate the receive node									
		В	eam break	k.								
6	TXC	S	end the en	nd flag.								

- 142 -

Page 149

LGT8FX8	D Series - Pr	ogramming Manual 1.0.5 LogicGreen Technologies Co., LTD
		TXC is set when the data in the transmit shift register is sent and the transmit buffer is empty. Execute the sending end
		TXC is automatically cleared when it is set, or it can be cleared by writing "1" to TXC. When the transmit end interrupt is enabled
		When TXCIE is "1", TXC can be used to generate a transmit end interrupt.
		Data register empty flag.
		When UDRE is "1", it indicates that the USART send data buffer is empty and can write data. When UDRE is
5	5 UDRE	"0" indicates that the USART transmit data buffer is full and can not write data. When the data register is empty
		When the enable bit UDRIE is "1", the UDRE can be used to generate a data register empty interrupt.
		Frame error flag.
		When FE is "1", it indicates that the data received by the receive data buffer has a frame error, that is, the first stop bit is
4	FE	"0". When FE is "0", it indicates that there is no frame error in the data received by the receive data buffer, ie the first
		The stop bit is "1". FE is set to be valid until the UDR is read. When writing to UCSRA, FE
		This one to write "0".
		Data overflow flag.
		When the receive buffer is full (contains two data), there is data in the receive shift register, and if it is detected at this time
3	DOR	A new start bit, a data overflow occurs, DOR is set, has been valid until the UDR is read. On UCSRA
		To write, DOR this bit to write "0".
2	PE	Parity error flag.
		When the parity is enabled (UPM1 is "1"), and the received data frame in the receive buffer has a parity
		Error, PE is set, has been valid until UDR is read. When writing to UCSRA, this bit is required for PE
		Write "0".
1	U2X	Speed transmit enable bit.
		When U2X is "1", the transmission rate of the asynchronous communication mode is doubled. When U2X is "0", asynchronous communication
		The transfer rate of the mode is the normal rate.
		This bit is valid only in asynchronous operation mode and is cleared when the synchronous operation mode is used.
0	MPCM m	nultiprocessor communication mode enable bit.
		Setting the MPCM bit will start the multiprocessor communication mode. After the MPCM is set, the USART receiver receives it

Those input frames that do not contain address information will be ignored. The transmitter is not affected by the MPCM settings.

UCSRB - USART Control and Status Register B

		UCSRB - USART Control and Status Register B									
Address: 0x	C1	Default: 0x00									
Bit	7	6	5	4	3	2	1	0			
Name	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8			
$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W	R / W	R	R / W			
Initial	0	0	0	0	0	0	0	0			
Bit Name	descript Receive	ion end interrupt e	enable bit.								

7 RXCIE Set RXC interrupt and disable RXC interrupt after clearing. When RXCIE is "1", the global interrupt is enabled, UCSRA When the RXC of the register is "1", the USART receive end interrupt can be generated.

The transmit end interrupt enable bit. 6 TXCIE

https://translate.googleusercontent.com/translate_f

Enable TXC interrupt after setting, disable TXC interrupt after clearing. When TXCIE is "1", the global interrupt is enabled, UCSRA

- 143 -

Page 150

LGT8FX8D Series - H	Programming Manual 1.0.5 LogicGreen Technologies Co., LTD					
	When the TXC of the register is "1", the USART transmit end interrupt can be generated.					
	Data register empty interrupt enable bit.					
5 UDRIE	Set to enable UDRE interrupt after clearing, disable UDRE interrupt after clearing. When UDRIE is "1", global interrupt is enabled,					
	The USART data register can be generated when the UDRE of the UCSRA register is "1".					
	Receive enable bit.					
4 RXEN	Set the USART receiver after setting. The general IO function of the RxD pin is replaced by the USART reception. Prohibited to receive					
	The device will refresh the receive buffer and invalidate the FE, DOR and PE flags.					
	Send enable bit.					
3 TXEN	Set the USART transmitter after setting. The general IO function of the TxD pin is replaced by the USART send. TXEN clear					
	After zero, it will only be possible to actually disable the USART transmission until all data has been sent.					
	Character length control bit 2.					
2 UCSZ2	UCSZ2 is combined with UCSZ1: 0 of the UCSRC register to set the number of data bits contained in the data frame.					
	Receive data bit 8.					
1 RXB8	When the data frame length is 9 bits, RXB8 is the most significant bit of the received data. Reads the lower 8 bits of data contained in the UDR					
	Before you read RXB8 first.					
	Send data bit 8.					
0 TXB8	When the data frame length is 9 bits, TXB8 is the most significant bit of the transmitted data. Write the lower 8 bits of data contained in the UDR					
	Before the first write TXB8.					

UCSRC - USART Control and Status Register C

		i	UCSRC - USA	ART Control an	d Status Regist	ter C				
Address:	0xC2		Default: 0x06							
Bit	7	6	5	4	3	2	1	0		
Name U	MSEL1 UMSEL	D	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL		
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	R / W	\mathbf{R} / \mathbf{W}	R / W	$\mathbf{R} \ / \ \mathbf{W}$		
Initial	0	0	0	0	0	1	1	0		
Bit	Name	description USART mode	selection bit.							
		UMSEL selec	ts synchronou	or asynchronous operation mode.						
		UMS	EL			mode				
7:6	UMSEL1: 0	0			USAI	RT Asynchrono	us operation m	ode		
		1			USAI	RT Synchronou	s mode of oper	ation		
		2			SPI	slave operating	g mode			
		3			SPI	master operati	ng mode			
		Parity mode s	election bit.							
		High UPM1 S	elect to enabl	e or disable par	ity, low order U	JPM0 Select od	d parity or even	n parity.		
		UPM	1:0			mode				
5:4	UPM1: 0	0			Γ	Disable parity				
		1				Keep it				
		2				Enable even pa	rity			
		3				Enable odd par	ity			

- 144 -

Page 151

LogicGreen Technologies Co., LTD

		Stop bit select bit. Select the number of bits for the stop bit.				
		USBS	Stop bit number			
3	3 USBS	0	1			
		1	2			
		Data frame character length selec	tion bit.			
		UCSZ1: 0 is combined with UCS	Z2 of the UCSRB register to set the number of data bits contained in the data frame.			
	UCSZ2: 0	Data frame length				
		0	5 digits			
		1	6 digits			
2:1	UCSZ1: 0	2	7 digits			
		3	8 bits			
		4	Keep it			
		5	Keep it			
		6	Keep it			
	7	9 digits				
		Clock polarity select bits.				
		In the USART synchronous operating mode, UCPOL sets the output data change and the sampling of the input data				

And the relationship between the synchronous clock XCK. Use asynchronous operation mode with UCPOL regardless of this bit

0 UCPOL Cleared

LGT8FX8D Series - Programming Manual 1.0.5

UCPOL	Send data changes	Receive data sampling
0	XCK rising edge	The falling edge of XCK
1	The falling edge of XCK	XCK rising edge

UBRRL - USART baud rate register low byte

			UBRRL - USA	RL - USART baud rate register low byte						
Address: 0	xC4	Default: 0x00								
Bit	7	6	5	4	3	2	1	0		
Name	UBRR7	UBRR6	UBRR5	UBRR4	UBRR3	UBRR2	UBRR1	UBRR0		
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W					
Initial	0	0	0	0	0	0	0	0		

Bit	Name	description
		The low byte portion of the USART baud rate register.
7: 0 UBI	RR [7: 0]	USART baud rate register contains UBRRL and UBRRH two parts, together used to set the communication
		Baud rate.

UBRRH - USART baud rate register high byte

	UBRRH - USART baud rate register high byte	
Address: 0xC5	Default: 0x00	

- 145 -

Page 152

LGT8FX8D Seri	ming Manual	1.0.5		LogicG	reen Technolo	gies Co., LTD		
Bit	7	6	5	4	3	2	1	0
Name	-	-	-	-	UBRR11 UE	3RR10	UBRR9	UBRR8
\mathbf{R} / \mathbf{W}	-	-	-	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W
Initial	0	0	0	0	0	0	0	0

Bit Name description

7:4	-	Keep it.						
		The high byte portion of the USART baud rate register.						
		USART baud rate register contains UBRR	ad rate register contains UBRRL and UBRRH two parts, together used to set up through					
		The baud rate of the letter.						
		UBRR = {UBRR [11: 8], UBRRL}						
3:0	UBRR [11: 8]	Operating mode	Baud rate calculation formula					
		Asynchronous normal mode	$BAUD = f_{sys} / (16 * (UBRR + 1))$					
		Asynchronous speed mode	$BAUD = f_{sys} / (8 * (UBRR + 1))$					
		Synchronous host mode	$BAUD = f_{sys} / (2 * (UBRR + 1))$					

UDR - USART data register

			UDR -	USART data re	gister						
Address: 0:	xC6		Default: 0x00								
Bit	7	6	5	4	3	2	1	0			
Name	UDR7	UDR6	UDR5	UDR4	UDR3	UDR2	UDR1	UDR0			
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R / W								
Initial	0	0	0	0	0	0	0	0			

Bit Name

description

USART	sends	and	receives	data.	
-------	-------	-----	----------	-------	--

The USART transmit data buffer and the receive data buffer share the USART data register UDR. Write the data

Into the UDR that is written to send data buffer, read data from the UDR to read the receive data buffer.

In the 5 to 8-bit data frame mode, the unused bits 9 are ignored by the transmitter and the receiver sets them

UDR 7:0

Is 0.

The transmit buffer can only be written when the UDRE flag of the UCSRA register is "1", otherwise The operation of the transmitter will go wrong. When the transmit shift register is empty, the transmitter will send the data in the buffer Is loaded into the transmit shift register, and then the data is serially output from the TxD pin. The receive buffer contains a two-stage FIFO. Once the receive buffer is read, the FIFO changes its state.

- 146 -

Page 153

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

USART0 - SPI operating mode

- Full-duplex operation, three-wire synchronous data transmission
- · Host or slave operation
- Supports all four operating modes (modes 0, 1, 2 and 3)
- Low or high first transmission (configurable data transfer order)
- Queue operation (double buffer)

High resolution baud rate generator

Summary

When the UCREL1 bit of the USCRC is set to "1", the SPI operating mode is enabled and is represented by USPI. This SPI module is Three-wire SPI operating mode, compared with the four-wire SPI mode, the lack of slave select line, the other three lines are consistent. USPI accounts Use the USART resources, including sending and receiving shift registers and buffers, and baud rate generators. Parity production Raw and check logic, data and clock recovery logic are invalid. The address of the control and status registers is the same, but send it

The function of the register bit will change as the SPI mode of operation needs.

USART in SPI structure

- 147 -

Page 154

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Clock generation

When the SPI is in host mode, it is necessary to provide a clock for communication, multiplexing the baud rate generator of the USART to generate this A clock. The clock is output from the XCK pin, so the XCK pin's data direction register (DDR_XCK) must be set

Is "1".

The clock frequency is determined by the following formula:

 $BAUD = f_{sys} / (2 * (UBRR + 1))$

When the SPI is operating in Slave mode, the communication clock is provided by the external host, input from the XCK pin, so the XCK pin The data direction register (DDR_XCK) must be set to "0".

SPI data mode and timing

SPI has four clock phase and polarity combination, there are control bits UCPHA and UCPOL to determine the specific control such as The following table and the following figure:

	SPI operating mode								
SPI mode	UCPOL	UCPHA	Starting along	End the edge					
0	0	0	Rising edge sampling	Falling edge setting					
1	0	1	Rising edge setting	Down edge sampling					
2	1	0	Down edge sampling	Rising edge setting					
3	1	1	Falling edge setting	Rising edge sampling					

SPI operating mode icon

Frame format

A serial frame of the SPI can start with the least significant bit or the most significant bit, ending with the most significant bit or the lowest bit, for a total of 8 bits of data. one After the end of the frame, you can immediately transfer the new frame, the end of the transmission can be pulled up the data line is idle.

data transmission

SPI sets the TXEN bit in the UCSRB register to "1" to enable the transmitter. The TxD pin is occupied by the transmitter to send the serial Output data. The receiver can not be enabled at this time.

SPI sets the RXEN bit in the UCSRB register to "1" to enable the receiver. The RxD pin is occupied by the receiver to receive the serial Input data. The transmitter must be enabled at this time.

- 148 -

Page 155

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Both SPI transmit and receive uses XCK as the transfer clock.

The SPI is first initialized before communication is performed. The initialization process usually includes the setting of the baud rate, the frame data bit The setting of the transmission sequence, and the reception of the receiver or transmitter as needed. For interrupt-driven SPI operations, the initialization is done The global interrupt flag is cleared and all interrupts of the SPI are disabled.

When performing a re-initialization such as changing the baud rate or frame structure, it is necessary to ensure that no data is transmitted. TXC flag can be Used to detect whether the transmitter has completed all transmissions, the RXC flag can be used to detect whether there are still numbers in the receive buffer It is not read. If the TXC flag is used for this purpose, before each data is sent (before writing the UDR register) The TXC flag must be cleared.

After initializing the SPI, write data to the UDR register to start the data transfer. Since the transmitter controls the transmission clock, Send and receive data are doing so. When sending a shift register ready to send a new frame of data, the transmitter is on The data written to the UDR register is moved from the transmit buffer to the transmit shift register and sent out. to ensure that The input buffer and the transmit data are synchronized, and the UDR register must be read once every byte of data has been transmitted. When made When data is spilled, the most recently received data will be lost, not the earliest received data.

Send flag and interrupt

The SPI transmitter has two flags: the SPI data register empty flag UDRE and the transmission end flag TXC, both flag bits Can generate an interrupt.

The data register empty flag UDRE is used to indicate whether the transmit buffer can write a new data. The bit is sending slow When the punch is empty, it is set to "1" and "0" when it is full. When the UDRE bit is "1", the CPU can write to the data register UDR Into the new data, and vice versa can not.

When the data register empty interrupt enable bit UDRIE in the UCSRB register is "1", as long as the UDRE is set (and Global interrupt enable), the SPI data register will generate an empty interrupt request. Writing to the register UDR will be cleared UDRE. When transmitting data in an interrupt mode, a new number must be written in the data register empty interrupt service routine To the UDR to clear the UDRE, or to disable the data register from being interrupted. Otherwise, once the interrupt service routine ends, A new interrupt will be generated again.

When the entire data frame is shifted out of the transmit shift register and there is no new data in the transmit register, the transmit end flag

https://translate.googleusercontent.com/translate_f

TXC will be set. Set the transmit enable bit to TXCIE (and global interrupt enable) on UCSRB to "1" When the TXC flag is set, the SPI transmit end interrupt will be executed. Once the interrupt service routine is entered, the TXC is marked The bit is automatically cleared, the CPU can also write "1" to the bit to clear.

Disable the transmitter

When TXEN is cleared, only after all the data has been sent to send the transmitter can be really prohibited, that is, send the shift There is no data to be transferred in the register and transmit buffer registers. After the transmitter is disabled, the TxD pin resumes its generic IO function.

Receive end flag and interrupt

The SPI receiver has a flag: the receive end flag RXC, which indicates whether the receive buffer has an unread number

- 149 -

Page 156

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

according to. This bit is "1" and "0" when the receive buffer has data that is not read. If the receiver is banned The receive buffer will be refreshed and the RXC will be cleared.

Set the receive enable interrupt enable bit RXCIE after UCSRB, as long as the RXC flag is set (and the global interrupt is enabled) The SPI receive end interrupt is generated. When data is received using the interrupt mode, the data reception end interrupt service routine must be completed Read the data from the UDR to clear the RXC flag, otherwise a new interrupt will be generated as soon as the interrupt handler is completed Health

Disable the receiver

It is forbidden for the receiver to function immediately compared to the transmitter. The data being received will be lost. Disable the receiver (RXEN clear Zero), the receiver will no longer occupy the RxD pin and the receive buffer will be refreshed.

Register definition

		1	USART register list
register	address	Defaults	description
UCSRA	0xC0	0x20	USPI Control and Status Register
UCSRB	0xC1	0x00	USPI Control and Status Register B
UCSRC	0xC2	0x06	USPI Control and Status Register C
UBRRL	0xC4	0x0	USPI baud rate register low byte
UBRRH	0xC5	0x0	USPI baud rate register high byte
UDR	0xC6	0x0	USPI data register

UCSRA - USPI control and status register A

In UCSRA - in USP Control and Status Register A

Address: 0xC0					Default: 0	x20		
Bit	7	6	5	4	3	2	1	0
Name	RXC	TXC	UDRE	-	-	-	-	-
$\mathbf{R} \ / \mathbf{W}$	R	$\mathbf{R} \ / \ \mathbf{W}$	R	-	-	-	-	-
Initial	0	0	1	0	0	0	0	0

Bit Name Description

		Receive end flag.
-	DVC	When the value of RXC is "1", it indicates that there is unread data in the receive buffer. When the value of RXC is "0"
/ RXC	Indicating that there is no unread data in the receive buffer. When the receiver is disabled, the receive buffer is refreshed, resulting in RXC	
		Was cleared. When the receive end interrupt enable bit RXCIE is "1", the RXC can be used to generate a receive end interrupt.
		Send the end flag.
		TXC is set when the data in the transmit shift register is sent and the transmit buffer is empty. Execute the sending end

TXC TXC is automatically cleared when it is set, or it can be cleared by writing "1" to TXC. When sending an end interrupt enable bit

When TXCIE is "1", TXC can be used to generate a transmit end interrupt.

Data register empty flag. UDRE

6

5

When UDRE is "1", it indicates that the USPI send data buffer is empty and can write data. When UDRE is

- 150 -

Page 157

LGT8FX8D	GT8FX8D Series - Programming Manual 1.0.5					LogicGreen Technologies Co., LTD				
		"0" indicates that the	USPI sends the	data buffer to f	full and can not	write data. Wh	en the data regi	ister is empty		
		When the UDRIE bit	is "1", the UDI	RE can be used	to generate a dat	a register emp	ty interrupt.			
4: 0	-	Retained under USPI.								
UCS	RB - USI	PI Control and Stat	us Register I	3						
			UCSRB - US	PI Control and	Status Register	В				
Address	s: 0xC1				Default: 0	x00				
Bit	7	6	5	4	3	2	1	0		
Name	RX	CIE TXCIE	UDRIE	RXEN	TXEN	-	-	-		
R / W	R /	W R / W	R / W	R / W	R / W	-	-	-		
Initial	0	0	0	0	0	0	0	0		
Bit	Name De	scription								
BR	raine De	Receive end interru	pt enable bit.							
7	RXCIE	Set RXC interrupt a	nd disable RX(C interrupt after	clearing. When	RXCIE is "1"	, global interru	ot is enabled,		
		The USPI receive e	nd interrupt car	h be generated v	when the RXC of	f the UCSRA 1	register is "1".			
		The transmit end in	terrupt enable b	oit.						
6	TXCIE	Enable TXC interru	pt after setting,	disable TXC ir	nterrupt after cle	aring. When T	XCIE is "1", gl	obal interrupt is enal	oled,	
		When the TXC of the	ne UCSRA regi	ister is "1", the	USPI transmissi	on end interru	ot can be genera	ated.		
		Data register empty	interrupt enabl	e bit.						
5	UDRIE	Set to enable UDRE	interrupt after	clearing, disab	le UDRE interru	pt after clearir	ng. When UDR	IE is "1", global inter	rupt is enabled,	
		The UDPI of the U	CSRA register i	is "1" to generat	te a USPI data re	egister empty i	nterrupt.			
		Receive enable bit.								
4	RXEN	Set the USPI receiv	er after setting.	The general IO	function of the	RxD pin is rep	placed by the U	SPI reception. Disab	le the receiver	
		The receive buffer w	vill be refreshe	d.						
		Send enable bit.								
3	TXEN	Set the USPI transm	nitter after settin	ng. The general	IO function of t	he TxD pin is	replaced by the	USPI transmission.	TXEN cleared	
		, It is only after all c	lata has been se	ent to complete	the USART can	not really be s	ent.			
2:0	-	Retained under USI	PI.							
UCS	RC - USA	ART Control and S	tatus Registe	er C						
			UCSRC - USA	ART Control an	d Status Registe	r C				
Address	s: 0xC2				Default: 0x8	6				
Bit	7	6	5	4	3	2	1	0		

Dit	,	0	5	-	5	2		0
Name UM	SEL1 UMSEL	0	-	-	-	DORD	UCPHA	UCPOL
\mathbf{R} / \mathbf{W}	R / W	R / W	-	-	-	R / W	R / W	R / W
Initial	0	0	0	0	0	1	1	0

Bit Name description

7: 6 UMSEL1: 0 USART mode selection bit.

Page 158

GT8FX8D S	Series - Progra	amming Manual 1	.0.5		LogicGreen Technologies Co., LTD					
		UMSEL selects	synchronous o	r asynchronous	operation mod	le.				
		UMSE	L			mode				
		0			USAR	T Asynchronou	is operation mo	de		
		1			USAR	T Synchronous	mode of opera	tion		
		2			SPI	slave operating	mode			
		3			SPI	master operatin	g mode			
5: 3	-	Retained under	USPI.							
		Data transfer or	der selection bi	it.						
2	DORD	DORE)			Data order				
		0			1	High first transı	nission			
		1			1	Low first transn	nission			
		Clock phase sele	ection.							
		UCPHA Selects	data sampling	at the beginnin	g or end edge.					
1	UCPHA	UCPH	UCPHA Sampling time							
		0			Starting along					
		1				End the edge	,			
		Clock polarity s	election.							
		UCPOL selects	data changes a	nd samples occ	ur on rising or	falling edges.				
0	UCPOL	UCI	POL	Sen	d data changes		Sampling of	received data		
		(0		CK rising edge	;	The falling	edge of XCK		
		1		TÌ	ne falling edge	of XCK	XCK risin	g edge		
UBRI	RL - USPI b	aud rate register	r low byte	PI baud rata rac	rister low bute					
Address:	0xC4		Obrite - 05	i i budd fale feg	Default: 0	x00				
Bit	7	6	5	4	3	2	1	0		
Name	UBRR7	UBRR6	UBRR5	UBRR4	UBRR3	UBRR2	UBRR1	UBRR0		
R / W	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	description								
7: 0 UBF	RR [7: 0]	USPI The low by Part, combined to	te portion of th set the baud ra	e baud rate regi ate for commun	ster. The USPI	baud rate regis	ster contains bo	th UBRRL and U	BRRH	

- 152 -

Page 159

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

UBRRH - USPI baud rate register high byte

The UBRRH - in USP Baud Rate Register High Byte

Address: 0xC5

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Bit	7	6	5	4	3	2	1	0		
Name	-	-	-	-	UBRR11 UBRR10		UBRR9	UBRR8		
\mathbf{R} / \mathbf{W}	-	-	-	-	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		
Bit	Name	description								
7:4	-	Retained under USPI.								
		The high byte portion of the USPI baud rate register.								
USPI baud rate register contains UBRRL and UBRRH two parts, together used to set the communication										
	Baud rate.									
	$UBRR = \{UBRR [11: 8], UBRRL\}$									
3: 0 UBRI	3: 0 UBRR [11: 8]									

Operating mode	Baud rate calculation formula
Slave mode	The baud rate is determined by the external host
Host mode	$BAUD = f_{sys} / (2 * (UBRR + 1))$

UDR - USPI data register

			UDR	- USPI data reg	ister				
Address:	0xC6								
Bit	7	6	5	4	3	2	1	0	
Name	UDR7	UDR6	UDR5	UDR4	UDR3	UDR2	UDR1	UDR0	
R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	
Initial	0	0	0	0	0	0	0	0	
Bit Name description									
		USPI sends and receives data.							
		The USPI sends the data buffer and the receive data buffer to share the USPI data register UDR. Write the data							
UDR is written to send data buffer, read data from the UDR read the receive data buffer. In the 5 to 8-bit data frame mode, the unused 9th bit is ignored by the transmitter, and the receiver sets the									
7:0	UDR	Only when the UDRE flag of the UCSRA register is "1" can the write buffer be written, no							

The operation of the transmitter will go wrong. When the transmit shift register is empty, the transmitter will send the buffer in the buffer. The data is loaded into the transmit shift register, and the data is serially output from the TxD pin. The receive buffer contains a two-stage FIFO. Once the receive buffer is read, the FIFO changes its shape state.

- 153 -

Page 160

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

TWI - Dual Line Serial Bus (I2C)

- Simple and powerful and flexible communication interface, only 2 lines
- Supports host and slave operation
- The device can operate in transmitter mode or receiver mode
- There are 128 slaves in the 7-bit address space
- Multi-host arbitration is supported
- Up to 400Kbps data transfer rate
- Fully programmable slave address and public address
- You can wake up when the address matches in sleep mode

TWI bus introduction

Two-wire serial interface TWI is well suited for typical processor applications. The TWI protocol allows the system designer to use only two bi-directional The transmission line can interconnect 128 different devices together. The two lines are the clock SCL and the data SDA. External hardware Only need to connect two pull-up resistors on each line. All devices connected to the bus have their own addresses. TWI protocol solution Determine the problem of bus arbitration.

TWI terms

The terms defined below will appear frequently in this section.

the term	description
Host	Start and stop the transmission of the device. The host is also responsible for generating the SCL clock.
Slave machine	The device that is addressed by the host
Transmitter	Place the data on the bus
receiver	A device that receives data from the bus

Electrical connections

As shown in the following figure, the two lines of the TWI interface are connected to the positive supply via the pull-up resistor. All TWI-compatible devices are driven by the bus Moving are open-drain or open-collector, so that the interface to achieve the operation of the line and function. When the TWI device is output When "0", the TWI bus will be low. When all TWI devices are tri-stated, the bus allows pull-up resistors

Raise the voltage. To ensure that all bus operations, all devices connected to the TWI bus must be powered on.

Page 161

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Data transmission and frame structure

Each bit of data transfer on the TWI bus is synchronized with the clock. When the clock line is high, the level on the data line must be guaranteed Hold steady, unless it is to generate a start or stop state.

SDA		
SCL	Data stable	Data stable
	Data	change
	TWI data validi	ty graph

Start and stop status

TWI's transmission is initiated and stopped by the host. The host sends a START status on the bus for transmission of data and sends a STOP State to stop data transfer. Between the START and STOP states, the bus is considered busy and does not allow other hosts

Trying to take control of the bus. There is a special case that only allows the occurrence of a new between the START and STOP states Of the START state, which is called the REPEATED START state, applies to the current host without giving up the bus control

Start a new transmission. After the REPEATED START until the next STOP, the bus is still considered busy.

This is consistent with START, so in this document, if there is no special instructions, are used START to express START and

REPEATED START. As shown in the following figure, the START and STOP conditions change the level of the SDA line when the SCL line is high status.

Address packet format

All address packets transmitted on the TWI bus are 9-bit data length, consisting of 7-bit addresses, 1-bit READ / WRITE control bits, and 1 bit response bit. When the READ / WRITE bit is "1", a read operation is performed; when the READ / WRITE bit is "0" Perform a write operation. After the slave is addressed, it must acknowledge in the 9th SCL (ACK) cycle by pulling down the SDA line. If If the slave is busy or there are other reasons that can not respond to the host, the SDA line should remain high for the ACK cycle. Then the host can be made The STOP status or REPEATED START status is restarted.

The address pack includes a slave address and a read or write control bit, denoted by SLA + R or SLA + W, respectively.

- 155 -

Page 162

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The MSB bit of the address byte first occurs. Except that the reserved address "00000000" is reserved for broadcast calls as well as all shapes. The address of the "1111xxxx" format needs to be reserved for future use. Other slave addresses can be freely assigned by the designer.

When a broadcast call occurs, all slaves should respond at the ACK cycle by pulling down the SDA line. When the host needs to be made The broadcast function can be used when sending the same information to multiple slaves. When the broadcast call address plus the WRITE bit is sent to the total After the line, all the slaves that need to respond to the broadcast call will pull down the SDA line during the ACK cycle. All of which responded widely The incoming call of the slave will receive the following packet. It should be noted that sending the broadcast call address plus the READ bit is not Meaningful, because if several slaves simultaneously send different data will bring bus conflict.

The address package format is shown below:

TWI address package format

Packet format

All data packets transmitted on the TWI bus are 9-bit data length consisting of 1 data byte and 1 bit acknowledge bit. in During data transmission, the host is responsible for generating the transfer clock SCL and START and STOP status, the transmitter sends the word to be transmitted Section data, the receiver generates a receive response. The acknowledgment signal ACK is the receiver in the 9th SCL (ACK) cycle by pulling down SDA line to produce. If the receiver holds the SDA line high during the ACK cycle, an unacknowledged signal NACK is issued. When the receiver has received the last byte, or for some reason can no longer receive any data, it should be in the collection To the last byte by sending a NACK to inform the sender. The MSB bits of the data byte are transmitted first.

Combined address and packet transmission

One transmission consists essentially of 1 START, 1 SLA + R / W, 1 or more packets, and 1 STOP. only

- 156 -

Page 163

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

START and STOP empty messages are illegal. You can use the line and function of the SCL line to achieve the handshake between the master and the slave. The slave can extend the SCL level by pulling down the SCL line. When the host set the clock speed is much faster than the slave, Or the slave takes extra time to process the data, this feature is very useful. The slave extends the low period of SCL and Does not affect the high period of SCL, it is still determined by the host. It can be seen that the slave can be changed by changing the SCL Duty cycle to reduce the TWI data transfer speed.

The following figure shows a typical data transfer. Note that multiple bytes can be transferred between SLA + R / W and STOP, depending on Application software implementation protocol.

SCL	1	7	8	9	1	8	9	
SDA	Addr MSB	Addr LSB	R / W	ACK	Data MSB	Data LSB	ACK	
START		SLA + R / W			I	Data Packet		STOP
Typical TWI transmission								

Multi - host system and its arbitration and synchronization

The TWI protocol allows multiple hosts on the bus and uses special measures to ensure that even if two or more hosts start simultaneously The transmission can also be handled like an ordinary transmission. Multi-host system will be two problems:

- Implementation of the algorithm allows only one host in a host to complete the transmission. When other hosts find that they have lost their options
 To stop their transmission. The process of selection is called arbitration. When the competition in the host found its arbitration failed,
 Should immediately switch to the slave mode to detect whether it is subject to bus control by the host. In fact, more host with the same
 When the transmission should not be detected by the slave, that is not allowed to destroy the data being transmitted on the bus.
- Different hosts may use different SCL frequencies. In order to ensure the consistency of transmission, you must design a synchronous host string Line clock program. This will simplify the arbitration process.

The lines and functions of the bus are used to solve the above problems. The serial clocks of all the hosts will line up together to produce a group Clock, its high time is equal to the shortest of all host clocks, the low level is equal to all the host clock A long one. All hosts are listening to SCL, and when the combined SCL clock goes high or low, they can be effectively started separately Calculate the respective SCL high and low level overflow periods.

Multi-host SCL clock synchronization mechanism as shown below:

Page 164

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Multi - host SCL clock synchronization timing diagram

After the output data, all hosts continue to listen on the SDA line to implement the arbitration. If the value read from SDA is lost with the host The value does not match, the host that is lost arbitration. Note that the host outputs a high level of SDA while the other host Output low-level SDA will lose arbitration. The host that lost the arbitration should immediately switch to the slave mode and detect if it is Be addressed. The host that lost the arbitration must set the SDA line high, but it can also be produced before the current data or address pack ends Raw clock signal. Arbitration will continue until the system has only one host, which may take multiple bits. If multiple hosts For the same slave addressing, the arbitration will continue to the packet.

Arbitration between two hosts

Note that arbitration is not permitted in the following cases:

- ♦ A REPEATED START state with a data bit between;
- A STOP state and a data bit between;
- Between a REPEATED START state and a STOP status;

Application software must consider the above situation, to ensure that these illegal arbitration will not appear. This means that in a multi-master system, All data transfers must consist of the same SLA + R / W and data packets. In other words, all transmissions must contain phases With the same number of packets, otherwise the arbitration results can not be defined.

Summary of TWI modules

The structure of the TWI module is shown in the following figure.

- 158 -

Page 165

TWI Block structure diagram

TWI module mainly includes bit rate generator, bus interface unit, address comparator and control unit. See details below Detailed description.

Bit rate generator unit

The bit rate generator unit mainly controls the SCL clock period in master mode. The SCL clock period consists of the TWI bit rate register TWBR and the prescaler control bits in the TWI status register TWSR. Slave operation is not subject to bit rate or prescaler Set the effect, but to ensure that the working clock of the slave is at least 16 times the SCL frequency. Note that the slave may extend SCL Of the low-level period, thereby reducing the TWI bus average clock frequency. The SCL clock frequency is generated by the following calculation formula:

 $f_{scl} = f_{sys} / (16 + 2 * TWBR * 4_{TWPS})$

Where TWBR is the value of the TWI bit rate register and TWPS is the prescaler control bit in the TWI status register.

Bus interface unit

The bus interface unit includes data and address shift register TWDR, START / STOP controller and arbitration decision hardware circuit.

TWDR contains the address or data byte to be sent, or the address or data byte that has been received. In addition to the 8-bit TWDR, The bus interface unit also includes an ACK / NACK register that is sent or received. This ACK / NACK register can not be directly addressed Accessed by software. When receiving data, it can be set or cleared by the TWI control register TWCR. When sending data , the received ACK / NACK value is reflected by the TWS value in the TWI status register TWSR.

The START / STOP controller is responsible for generating and detecting START, REPEATED START and STOP statuses. When the MCU is in some Sleep mode, START / STOP controller can still detect START and STOP status, when the host on the TWI bus search The MCU will wake up from Sleep mode.

If TWI initiates a data transfer in host mode, the arbitration detection circuit will continuously monitor the bus to determine if it still owns Bus control. When the TWI module loses bus control, the control unit will perform the correct action and generate the appropriate

- 159 -

Status code to inform the MCU.

Address matching unit

The address matching unit is used to check whether the received address byte matches the 7-bit address in the TWI address register. when The TWI broadcast call identification enable bit (TWGCE) in the TWAR register is set and the address received from the bus is Broadcast address comparison. Once the address matches successfully, the control unit will perform the correct action. The TWI module can respond or not respond The addressing of the host depends on the setting of the TWCR register. Even in sleep mode, the address matching unit can be compared Address, if the host on the bus address, the MCU wake from the sleep mode.

control unit

The control unit is responsible for monitoring the bus and generating a corresponding response according to the settings of the TWCR. Occurs when the TWI bus needs to be applied When the software participates in the event, the TWI interrupt flag bit TWINT will be set. In the next one clock cycle, TWI-like The status register TWSR will be updated to indicate the status code for the event. When TWINT is set, TWSR contains the exact status information. At other times, TWSR is a special status code, indicating that there is no exact status information. Once TWINT The flag is set and the SCL line remains low, pausing the TWI transmission on the bus, allowing the application to process the event.

The TWINT flag is set in the following cases:

- TWI sends START / REPEATED START status
- ◆ TWI transmits SLA + R / W
- TWI sends an address byte after
- TWI bus after arbitration failed
- TWI is addressed by host (slave address match or broadcast mode)
- ♦ When it is addressed as a slave, it receives a STOP or REPEATED START
- ♦ When a bus error caused by an illegal START or STOP status occurs

TWI use

The TWI interface is byte-oriented and interrupt-based. All bus events, such as receiving a byte or sending a START Signal, etc., will produce a TWI interrupt. Since TWI is based on the interrupt, so in the TWI byte transmission process, Application software can be free to carry out other operations. TWECT register in TWCR interrupt enable bit TWIE and global interrupt enable Can be used to control whether a TWI interrupt is generated when the TWINT flag is set. If the TWIE bit is cleared, the application software The TWINT flag must be used to detect the action on the TWI bus.

When the TWINT flag is set, it indicates that the TWI interface completes the current operation and waits for the response of the application software. At this In the case where the TWI status register TWSR contains a status code that reflects the current bus status. Application software can pass Set the TWCR and TWDR registers to determine how the TWI interface will work at the next TWI bus cycle.

The following figure shows an example of how the application connects to the TWI interface. In this example, the host expects to send a byte of data to Slave machine. The description here is very simple, the next chapter will be more detailed display.

- 160 -

Page 167
Set TWINT; Set TWSP: Se

TWI typical transmission process diagram

The TWI transmission process shown in the figure is:

- The first step in TWI transmission is to send START. The TWI hardware is sent by writing a specific value to the TWCR register START signal. The values written will be described in detail later. It is very important to set TWINT in the written value, Writing a "1" to the TWINT bit clears this bit. TWI register TWINT set during TWI does not start any operation For. Once the software clears the TWINT bit, the TWI module immediately initiates the transmission of the START signal.
- When the START status is transmitted, the TWINT flag of the TWCR is set, the TWSR is updated to the new status code, Indicates that the START signal was sent successfully.
- 3. The application looks at the value of TWSR and determines that the START status has been successfully sent. If TWSR is displayed as a different value, The application can perform special operations, such as calling error handlers. When the status code is determined to be consistent with the expected, The program loads the value of SLA + W into the TWDR register. The TWDR register can be used both in address and data. The software then writes a specific value to the TWCR register indicating the value of the SLA + W in the TWI hardware to send TWDR. write The incoming value will be described in detail later. Set TWINT in the written value to clear the TWINT flag. TWCR The TWINT of the register is set during TWI without initiating any operation. Once the software clears the TWINT bit, the TWI module Immediately start the delivery of the address packet.
- 4. When the address packet is sent, the TWINT flag of TWCR will be set and TWSR will be updated to the new status code. The address packet is sent successfully. The status code also reflects whether the slave responds to the address packet.
- 5. The application looks at the value of TWSR, determines that the address packet has been successfully sent, and the received ACK is the expected value. If TWSR Displayed as other values, the application can perform some special operations, such as calling an error handler. When determining the state When the code is consistent with the expected, the program loads the value of Data into the TWDR register. Then the software goes to the TWCR register Writes a specific value that indicates the value of Data in TWIT hardware to send TWDR. The values written will be described in detail later. Set TWINT in the written value to clear the TWINT flag. TWINT register of TWCR register is set TWI does not start any operation. Once the software clears the TWINT bit, the TWI module immediately initiates the transfer of the packet.
- 6. When the packet is sent, the TWINT flag of TWCR is set, TWSR is updated to the new status code, The packet is successfully sent. The status code also reflects whether the slave responds to the packet.
- 7. The application looks at the value of TWSR to determine that the packet has been successfully sent and the received ACK is the expected value. If TWSR Displayed as other values, the application can perform some special operations, such as calling an error handler. When determining the state When the code is consistent with the expected, the software writes a specific value to the TWCR register indicating that the TWI hardware sends a STOP signal. write The incoming value will be described in detail later. Set TWINT in the written value to clear the TWINT flag. TWCR The TWINT of the register is set during TWI without initiating any operation. Once the software clears the TWINT bit, the TWI module The STOP signal is transmitted immediately. It should be noted that TWINT will not be done after the STOP signal has been transmitted Position.

Although the example is simpler, it contains all the rules in the TWI data transfer process. Summarized as follows:

The TWINT flag is set when TWI completes an operation and waits for feedback from the application. The SCL clock line is always held

- 161 -

Page 168

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Pull down until TWINT is cleared;

- When the TWINT flag is set, the user must update all TWI register values for the next TWI bus cycle The value. For example, the TWDR register must load the value to be sent by the next bus cycle.
- After updating all the registers while completing other necessary operations, the application writes the TWCR register. in When TWCR is written, the TWINT bit must be set to clear the TWINT flag. After TWINT is cleared, TWI is on The operation set by TWCR is executed.

Transmission mode

TWI can work in the following four main modes: Host Transmitter (MT), Host Receiver (MR), Slave Transmitter (ST) and slave receiver (SR). Multiple modes can be used under the same application. For example, TWI can use the MT mode TWI EEPROM writes data and reads data from EEPROM in MR mode. If there are other hosts on the system, there are It is also possible to send data to TWI, which will use SR mode. This is the application software to decide which mode to use.

These patterns will be described in detail below. In each mode of data transmission, will be combined with pictures to describe the possible shape Code. These pictures contain the following abbreviations:

https://translate.googleusercontent.com/translate_f

S: Start state Rs: REPEATED START state R: Read operation flag (SDA is high) W: write operation flag (SDA is low) A: acknowledge bit (SDA is low) NA: No acknowledge bit (SDA is high) Data: 8-bit data bytes P: STOP status SLA: Slave Address

The circle in the picture is used to indicate that the TWINT flag is set. The number in the circle indicates the status code in the TWSR register. The prescaler control bit is masked as "0". In these places, the application must perform the appropriate action to continue or complete the TWI transmission. TWI transfers are pending until the TWINT flag is cleared.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate software operation. Each form is given in each form The code required for the software operation and subsequent serial transmission details. Note that the prescaler control bits in TWSR are masked Is "0".

Host send mode

In the master transmit mode, TWI will send a certain number of data bytes to the slave receiver. In order to enter the host mode, Send a START signal. The next address packet format determines whether TWI is in the host transmitter mode or the host receiver mode. If you send SLA + W, enter the host send mode. If SLA + R is sent, it enters the host receive mode. This The status codes mentioned in one section assume that the prescaler control bit is "0".

Write the START signal by writing the following values to the TWCR register:

	TWINT	TWEA	TWSTA T	WSTO TW	WC	TWEN	-	TWIE
	1	х	1	0	х	1	0	x
TWE	N bit must be	set to "1" to e	enable TWI in	terface, TWS	STA set to "1"	to send START	signal, TW	/INT set to "1

- 162 -

Page 169

LGT8FX8D Series - Programming Manual 1.0.5 LogicGreen Technologies Co., LTD	
---	--

To clear the TWINT flag. The TWI module detects the bus status and sends the START signal as soon as the bus is idle. When sending After START, the hardware sets the TWINT flag and updates the TWSR status code to 0x08.

In order to enter the host send mode, you must send SLA + W. This can be done by doing the following. Write to the TWDR register first Into SLA + W, and then write "1" to the TWINT bit to clear the TWINT flag to continue transmission, that is, write to the TWCR register The following values are used to send SLA + W:

TWINT	TWEA	TWSTA T	WSTO TWW	/C	TWEN	-	TWIE
1	x	0	0	х	1	0	х

When SLA + W is transmitted and the acknowledge signal is received, TWINT is set and the status code of TWSR is updated. may The status code is 0x18, 0x20 or 0x38. A suitable response to each status code is described in detail in the status code table.

When SLA + W is sent successfully, it can start sending packets. This can be done by writing data to the TWDR register.

TWDR can only be written when the TWINT flag is high. Otherwise, the access is ignored while writing the conflicting flag bit TWWC Will be set. After updating the TWDR, write "1" to the TWINT bit to clear the TWINT flag to continue transmission. Ie to TWCR The register writes the following values to send the data:

TWINT	TWEA	TWSTA T	WSTO TWV	VC	TWEN	-	TWIE
1	х	0	0	x	1	0	х

When the packet is sent and the acknowledge signal is received, TWINT is set and the status code of the TWSR is updated. possible The status code is 0x28 or 0x30. A suitable response to each status code is described in detail in the status code table.

When the data is sent successfully, you can continue to send data packets. This process is repeated until the last byte is sent. The host generates a STOP signal or a REPEATED START signal before the entire transmission ends.

The STOP signal is issued by writing the following values to the TWCR register:

TWINT	TWEA	TWSTA T	TWSTA TWSTO TWWC		TWEN	-	TWIE		
1	x	0	1	x	1	0	x		
Write the REPEATED START signal by writing the following values to the TWCR register:									

TWINT	TWEA	TWSTA I	WSTO TWV	VC	TWEN	-	TWIE
1	x	1	0	х	1	0	х

After sending REPEATED START (status code 0x10), the TWI interface can access the same slave again, or access New slave without sending a STOP signal. REPEATED START causes the host to be able to lose control of the bus Switching between different slaves, master transmitter and host receiver modes.

The status code in the host transmit mode and the corresponding operation are shown in the following table:

			Hos	t status	s code tal	ble for sendir	ng moo	le
				Appl	ication sof	tware response		
status code		Bus and hardware	Read / write		Operation of TWCR			The next step in the hardware
		Status	TWDR	STA S	TO TWI	NT TWEA		
	0x08	START has been set	nt to load	0	0	1	x	Will send SLA + W;
			SLA + W					ACK or NACK will be received
	0x10	REPEATED	load	0	0	1	x	Will send SLA + W;
		START has been see	ntSLA + W					ACK or NACK will be received

- 163 -

Page 170

LGT8FX8D Ser	ries - Programming Mar	ual 1.0.5					LogicGreen Technologies Co., LTD
		load	0	0	1	x	Will send SLA + R;
		SLA + R					Will receive ACK or NACK;
							Will switch to MR mode
0x18	SLA + W has been	is Nuetiber of lo	adø	0	1	х	Will send data;
	give away;	according to					ACK or NACK will be received
	Received ACK	No operation	1	0	1	х	Will send REPEATED START
		No operation	0	1	1	х	Will send STOP;
							The TWSTO flag is reset
		No operation	1	1	1	х	Will send STOP;
							The TWSTO flag will be reset;
							Will send START
0x20	SLA + W has been	isNuetber of lo	ad 9	0	1	х	Will send data;
	give away;	according to					ACK or NACK will be received
	Received NACK	No operation	1	0	1	х	Will send REPEATED START
		No operation	0	1	1	х	Will send STOP;
							The TWSTO flag is reset
		No operation	1	1	1	x	Will send STOP;
							The TWSTO flag will be reset;
							Will send START
0x28	Data bytes already	Number of lo	ad 9	0	1	x	Will send data;
	Send;	according to					ACK or NACK will be received
	ACK	No operation	1	0	1	x	Will send REPEATED START
		No operation	0	1	1	х	Will send STOP;
							The TWSTO flag is reset
		No operation	1	1	1	х	Will send STOP;
							The TWSTO flag will be reset;
							Will send START
0x30	Data bytes already	Number of lo	adg	0	1	x	Will send data;
	Send;	according to					ACK or NACK will be received
	NACK	No operation	1	0	1	x	Will send REPEATED START
		No operation	0	1	1	x	Will send STOP;
							The TWSTO flag is reset

	No operation	1	1	1	x	Will send STOP;
						The TWSTO flag will be reset;
						Will send START
0x38	SLA + W or number No operation	0	0	1	x	Will release the bus;
	Failed by arbitration					Will enter the unaddressed slave mode
	No operation	1	0	1	х	Will send START when idle

The format and status of the host send mode are as follows:

Page 171

LGT8FX8D Series - Pro	gramming Manual	1.0.5		LogicGreen Technologies Co., LTD				
	MT							
S	SLA + W	А	DATA	А	Р			
0x08		0x18		0x28				
Next transfer started with a DEDLATED START					Rs	SLA + W		
KI LALD SPACE								
				0	x10			
Not acknowledge received after the slave address		NA P				SLA + R		
		0x20					MR	
Not acknowledge received after the data byte				NA	Р			
				0x30				
Arbitration lost in slave address or data byte		A / NA Other master		A / NA Other m	aster			
		0x38		0x38				
Arbitration lost and		A Other master						
addressed as slave								
		0x68 0x78 0	ixB0	To Slave Mode				
	from Master to Slave		DATA	А	any number of data byte its acknowledge bit	s and		
	From Slave to Master		п		status code in TWSR			

The format and status of the host send mode

Host receive mode

In host receive mode, TWI receives a certain number of data bytes from the slave transmitter. In order to enter the host mode, Send a START signal. The next address packet format determines whether TWI is in the host transmitter mode or the host receiver mode. If you send SLA + W, enter the host send mode. If SLA + R is sent, it enters the host receive mode. This The status codes mentioned in one section assume that the prescaler control bit is "0".

Write the START signal by writing the following values to the TWCR register:

TWINT TWEA TWSTATWSTOTWWC TWEN - TWIE

https://translate.googleusercontent.com/translate_f

x 1 0 x 1 0 x

TWEN bit must be set to "1" to enable TWI interface, TWSTA set to "1" to send START signal, TWINT set to "1" To clear the TWINT flag. The TWI module detects the bus status and sends the START signal as soon as the bus is idle. When sending

- 165 -

Page 172

LGT8FX8D Series - Programming Manual 1.0.5

1

LogicGreen Technologies Co., LTD

After START, the hardware sets the TWINT flag and updates the TWSR status code to 0x08.

In order to enter the host receive mode, you must send SLA + R. This can be done by doing the following. Write to the TWDR register first Into SLA + R, and then write "1" to the TWINT bit to clear the TWINT flag to continue transmission, ie write to the TWCR register The following values are used to send SLA + R:

TWINT	TWEA	TWSTA T	WSTO TWW	C C	TWEN	-	TWIE
1	x	0	0	x	1	0	x

When the SLA + R is transmitted and the acknowledge signal is received, TWINT is set and the status code of the TWSR is updated. possible The status code is 0x38, 0x40, or 0x48. A suitable response to each status code is described in detail in the status code table.

When SLA + R is sent successfully, it can start receiving packets. Clear the TWINT flag by writing "1" to the TWINT bit Continue to receive. The following values are written to the TWCR register to initiate reception:

TWINT	TWEA	TWSTA T	WSTO TWW	'C	TWEN	-	TWIE
1	х	0	0	х	1	0	х

When the packet is received and the acknowledge signal is transmitted, TWINT is set and the status code of the TWSR is updated. possible The status code is 0x50 or 0x58. A suitable response to each status code is described in detail in the status code table.

When the data reception is successful, you can continue to receive data packets. This process is repeated until the last byte is received. After the host receives the last byte, it must send a NACK acknowledge signal to the slave transmitter. The host generates a STOP signal Or the REPEATED START signal is completed by the entire reception.

The STOP signal is issued by writing the following values to the TWCR register:

TWINT	TWEA	TWSTA T	WSTO TWW	VC	TWEN	-	TWIE
1	х	0	1	х	1	0	х

Write the REPEATED START signal by writing the following values to the TWCR register:

TWINT	TWEA	TWSTA T	WSTO TWV	VC	TWEN	-	TWIE
1	х	1	0	х	1	0	х

After sending REPEATED START (status code 0x10), the TWI interface can access the same host again, or access The new host without sending a STOP signal. REPEATED START causes the host to be able to lose control of the bus Switching between different slaves, master transmitter and host receiver modes.

The status code in the host receive mode and the corresponding operation are shown in the following table:

		Н	ost recei	ve mode s	tatus code tal	ble	
status code	Bus and hard	Read / write		Operation of TWCR			The next step in the hardware
	state of the item	TWDR	STA	STO TW	INT TWEA		
0x08	START has been	islaadd	0	0	1	x	Will send SLA + R;
	give away	SLA + R					ACK or NACK will be received
0x10	REPEATED	load	0	0	1	x	Will send SLA + R;
	START has been	isSulueAd + R					ACK or NACK will be received
	give away	load	0	0	1	x	Will send SLA + W;
		SLA + W					Will receive ACK or NACK;
				166			

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Page 173

LGT8FX8D Series - Programming Manual 1.0.5
--

LogicGreen Technologies Co., LTD

							Will switch to MT mode
0x38	SLA + R or num	beNo operation	0	0	1	x	Will release the bus;
	According to arb	itration,					Will enter the unaddressed slave mode
	defeat	No operation	1	0	1	x	Will send START when idle
0x40	SLA + R has bee	n Nouepleration	0	0	1	0	Will receive data;
	give away;						Will send NACK
	Received ACK	No operation	0	0	1	1	Will receive data;
							ACK will be sent
0x48	SLA + R has bee	n Nouepleration	1	0	1	x	Will send REPEATED START
	give away;	No operation	0	1	1	x	Will send STOP;
	received						The TWSTO flag is reset
	NACK	No operation	1	1	1	x	Will send STOP;
							The TWSTO flag will be reset;
							Will send START
0x50	Data bytes	Read the numb	्रम्	0	1	0	Will receive data;
	Received;	according to					Will send NACK
	ACK has been se	ntRead the numb	କା	0	1	1	Will receive data;
		according to					ACK will be sent
0x58	Data bytes	Read the numb	peţr	0	1	x	Will send REPEATED START
	Received;	according to					
	NACK has been	is Read the numb	କା	1	1	x	Will send STOP;
	give away	according to					The TWSTO flag is reset
		Read the numb	peţr	1	1	x	Will send STOP;
		according to					The TWSTO flag will be reset;
							Will send START

The format and status of the host receive mode are as follows:

- 167 -

LogicGreen Technologies Co., LTD

Page 174

LGT8FX8D Series - Programming Manual 1.0.5

MR

S SLA+R A DATA A DATA NA P

Slave receive mode

In the slave receive mode, a certain number of data bytes can be received from the host transmitter. The status code mentioned in this chapter It is assumed that the prescaler control bit is "0".

To start the slave receive mode, set the TWAR and TWCR registers.

0

TWAR needs to be set as follows:

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE Device slave address

The upper 7 bits of TWAR are the slave addresses that the TWI interface responds to when the host is addressed. If LSB is set, TWI responds to broadcast call Called address (0x00), otherwise ignore the general call address.

1

0

х

TWCR should be set as follows:

1

0

TWINT TWEA TWSTA TWSTO TWWC TWEN TWIE

0 TWEN must be set to enable the TWI interface, TWEA must be set to enable the host to address (slave address or broadcast call) to Return to the confirmation message ACK. TWSTA and TWSTO must be cleared.

- 168 -

0

Page 175

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

After the TWAR and TWCR are initialized, the TWI interface starts waiting until its slave address (or broadcast address) is found site. The TWI enters the slave receive mode when the data direction bit of the slave address is "0" (indicating a write operation). when When the data direction bit is "1" (indicating read operation), TWI enters the slave transmission mode. Receive their own slave address and write After the operation flag is set, the TWINT flag is set and the valid status code is also updated to TWSR. All status codes are appropriate The response will be described in detail in the status code table. It should be noted that the host mode after the TWI arbitration can also be failed To enter the slave receive mode (see status codes 0x68 and 0x78).

If the TWEA bit is reset during transmission, TWI will return NACK (high) to SDA after receiving a byte on-line. This can be used to indicate that the slave can not receive more data. When the TWEA bit is "0", TWI will not respond The address of the slave. However, TWI will still monitor the bus, once TWEA is set, you can restore the address recognition and response. That is, you can use TWEA to temporarily isolate the TWI interface from the bus.

The clock of the TWI interface can be turned off in other sleep modes except the idle mode. If the slave can receive the mode, The interface will continue to respond to the slave address or broadcast address using the bus clock. Address match will wake up the MCU. During awakening, The TWI interface will remain SCL low until the TWINT flag is cleared. When the TWI interface clock returns to normal Receive more data.

The status code of the slave receive mode is shown in the following table:

			Appl	ication so	ltware response		
status code	Bus and hardware status	Read / write		Operatio	on of TWCR		The next step in the hardware
		TWDR	STA S	FO TWIN	T TWEA		
0x60	SLA + W has been received;	No operation	x	0	1	0	Will receive data;
	ACK has been sent						Will send NACK
		No operation	x	0	1	1	Will receive data;
							ACK will be sent
0x68	Sending SLA + R / W	No operation	x	0	1	0	Will receive data;
	Failing						Will send NACK
	SLA + W has been received;	No operation	x	0	1	1	Will receive data;
	ACK has been sent						ACK will be sent
0x70	The broadcast address has been	eiNreopiaradi,on	x	0	1	0	Will receive data;
	ACK has been sent						Will send NACK
		No operation	x	0	1	1	Will receive data;
							ACK will be sent
0x78	Sending SLA + R / W	No operation	x	0	1	0	Will receive data;
	Failing						Will send NACK
	SLA + W has been received;	No operation	x	0	1	1	Will receive data;
	ACK has been sent						ACK will be sent
0x80	Own data has been received;	Read the num	ben	0	1	0	Will receive data;
	ACK has been sent	according to					Will send NACK
		Read the num	beĸ	0	1	1	Will receive data;
		according to					ACK will be sent
0x88	Own data has been received;	Read the num	be 0	0	1	0	Will switch to unreserved from

- 169 -

Page 176

LGT8FX8D Series - Programming Manual 1.0	0.5		LogicGreen Technologies Co., LTD			
NACK has been sent	according to				Machine mode Will not respond to the slave address And broadcast	
	Read the number	0	1	1	Will switch to unreserved from Machine mode Will respond to the slave address;	
	Read the number	0	1	0	TWGCE = 1 will respond broadcast Will switch to unreserved from Machine mode	
	2				Will not respond to the slave address And broadcast; Bus will be sent when idle	
	Read the numbet according to	0	1	1	START Will switch to unreserved from Machine mode Will respond to the slave address;	
					TWGCE = 1 will respond broadcast; Bus will be sent when idle	

30/08/2017

0x90

0x98

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

					START
Broadcast data received;	Read the number	0	1	0	Will receive data;
ACK has been sent	according to				Will send NACK
	Read the number $\ensuremath{\kappa}$	0	1	1	Will receive data;
	according to				ACK will be sent
Broadcast data received;	Read the number	0	1	0	Will switch to unreserved from
NACK has been sent	according to				Machine mode
					Will not respond to the slave address
					And broadcast
	Read the number	0	1	1	Will switch to unreserved from
	according to				Machine mode
					Will respond to the slave address;
					TWGCE = 1 will respond
					broadcast
	Read the number	0	1	0	Will switch to unreserved from
	according to				Machine mode
					Will not respond to the slave address
					And broadcast;
					Bus will be sent when idle
					START
	Read the number	0	1	1	Will switch to unreserved from
	according to				Machine mode
					Will respond to the slave address;
					TWGCE = 1 will respond

- 170 -

Page 177

LGT8FX8D Series - Programming Manual 1.0.5						LogicGreen Technologies Co., LTD		
						broadcast; Bus will be sent when idle START		
0xA0	When the machine is working No operation STOP or REPEATED START	0	0	1	0	Will switch to unreserved from Machine mode Will not respond to the slave address And broadcast		
	No operation	0	0	1	1	Will switch to unreserved from Machine mode Will respond to the slave address; TWGCE = 1 will respond broadcast		
	No operation	1	0	1	0	Will switch to unreserved from Machine mode Will not respond to the slave address And broadcast; Bus will be sent when idle START		
	No operation	1	0	1	1	Will switch to unreserved from Machine mode Will respond to the slave address; TWGCE = 1 will respond broadcast; Bus will be sent when idle START		

The format and status of the slave receive mode are as follows:

- 171 -

Page 178

LGT8FX8D Series - Programming Manual 1.0.5 LogicGreen Technologies Co., LTD SR SLA + W DATA P or S А DATA А s А 0x60 0x80 0x80 0xA0 Last byte received and NA P or S NACK sen Arbitration lost and А addressed as slave 0x88 0x68 General Call А DATA А DATA А P or S 0x70 0x90 0x90 0xA0 Last byte rec NACK sent ed and P or S NA Arbitration lost and addre А as slave by general call 0x98 0x78 any number of data bytes its acknowledge bit from Master to Slave DATA А status code in TWSR From Slave to Master n Slave receive mode format and status diagram

Slave send mode

In the slave transmit mode, a certain number of data bytes can be sent to the host receiver. The status code mentioned in this chapter It is assumed that the prescaler control bit is "0".

To start the slave receive mode, set the TWAR and TWCR registers. TWAR needs to be set as follows:

TWA3 TWA2 TWA1 TWA0 TWGCE Device slave address

The upper 7 bits of TWAR are the slave addresses that the TWI interface responds to when the host is addressed. If LSB is set, TWI responds to broadcast call Called address (0x00), otherwise ignore the general call address.

TWCR should be set as follows:

TWA5

TWA4

TWA6

TWINT	TWEA	TWSTA T	WSTO TWV	VC	TWEN	-	TWIE	
0	1	0	0	0	1	0	x	

- 172 -

Page 179

LogicGreen Technologies Co., LTD

TWEN must be set to enable the TWI interface, TWEA must be set to enable the host to address (slave address or broadcast call) to Return to the confirmation message ACK. TWSTA and TWSTO must be cleared.

After the TWAR and TWCR are initialized, the TWI interface starts waiting until its slave address (or broadcast address) is found site. The TWI enters the slave receive mode when the data direction bit of the slave address is "0" (indicating a write operation). when When the data direction bit is "1" (indicating read operation), TWI enters the slave transmission mode. Receive their own slave address and read After the operation flag is set, the TWINT flag is set and the valid status code is also updated to TWSR. All status codes are appropriate The response will be described in detail in the status code table. It should be noted that the host mode after the TWI arbitration can also be failed To enter the slave transmit mode (see status code 0xB0).

If the TWEA bit is reset during transmission, TWI will switch to unaddressed slave mode after sending the last byte. The status code in the TWSR register will be updated after the host receiver gives NACK or ACK for the last byte of transmission. For 0xC0 or 0xC8. If the host receiver continues to transmit the operation, the slave transmitter will not respond, the host will receive the full "1" data (ie 0xFF). When the slave sends the last byte of data (TWEA is cleared) and the NACK is expected Response, and the host wants to receive more data to send ACK as a response, TWSR will be updated to 0xC8.

When the TWEA bit is "0", TWI does not respond to its own slave address. But TWI will still listen to the bus once TWEA Is set, you can restore the address recognition and response. That is, you can use TWEA to temporarily switch the TWI interface from the bus Isolated out.

The clock of the TWI interface can be turned off in other sleep modes except the idle mode. If the slave can receive the mode, The interface will continue to respond to the slave address or broadcast address using the bus clock. Address match will wake up the MCU. During awakening, The TWI interface will remain SCL low until the TWINT flag is cleared. When the TWI interface clock returns to normal Receive more data.

The status code of the slave transmit mode is shown in the following table:

Slave status code table for sending mode

	Deer and band		Applica	ation softv			
status code	Bus and nard	Read / write		Operati	on of TWCR		The next step in the hardware
	State of the item	TWDR	STA S	TO TWIN	T TWEA		
0xA8	SLA + R has been	n E-onardedatea	x	0	1	0	Will send the last data;
	Close						It is desirable to receive NACK
ACK has been sentLoad data			x	0	1	1	Will send data;
						ACK will be received	
0xB0	hair give a	wkayad data	x	0	1	0	Will send the last data;
	SLA + R / W					It is desirable to receive NACK	
	Failure of arbitrat	x	0	1	1	Will send data;	
	SLA + R has been	n connected					ACK will be received
	Close						
	ACK has been ser	nt					
0xB8	Data has been issu	uddaad data	x	0	1	0	Will send the last data;
	Send;					It is desirable to receive NACK	
	receive	Load data	х	0	1	1	Will send data;

- 173 -

Page 180

LGT8FX8D Serie	es - Programming	g Manual 1.0.5				I	LogicGreen Technologies Co., LTD		
							ACK will be received		
0xC0	Data has been is	suedo operation	0	0	1	0	Will switch to unreserved slave mode		
	give away;						formula;		
	NACK is connec	cted					Will not respond to the slave address and broadcast		
	Receive	No operation	0	0	1	1	Will switch to unreserved slave mode		
							formula;		
							Will respond to the slave address;		
							When TWGCE = 1, the response will be broadcast		
		No operation	1	0	1	0	Will switch to unreserved slave mode		
							formula;		
							Will not respond to the slave address and wide		
							broadcast;		
							Bus is sent when the bus is idle		
		No operation	1	0	1	1	Will switch to unreserved slave mode		
							formula;		
							Will respond to the slave address;		
							TWGCE = 1 will respond to the broadcast;		
							Bus is sent when the bus is idle		
0xC8	the last one	No operation	0	0	1	0	Will switch to unreserved slave mode		
	Data has been is	sued					formula;		
	give away;						Will not respond to the slave address and broadcast		
	ACK has been re	eceñiædperation	0	0	1	1	Will switch to unreserved slave mode		
							formula;		
							Will respond to the slave address;		
							When TWGCE = 1, the response will be broadcast		
		No operation	1	0	1	0	Will switch to unreserved slave mode		
							formula;		
							Will not respond to the slave address and wide		
							broadcast;		
							Bus is sent when the bus is idle		
		No operation	1	0	1	1	Will switch to unreserved slave mode		
							formula;		
							Will respond to the slave address;		
							TWGCE = 1 will respond to the broadcast;		
							Bus is sent when the bus is idle		

The format and status of the slave transmit mode are shown in the following figure:

- 174 -

Page 181

LGT8FX8D Series - Programming Manual 1.0.5

The format and status of the slave mode

Other status

There are two status codes that do not have a corresponding TWI state definition, as shown in the following table:

Other status code table

			oulei	status c			
	Bus and hardware status		Applic	ation sof	tware response	;	
status code		Read / write		Operat	ion of TWCR		The next step in the hardware
		TWDR	STA STO		TWINT	TWEA	
0xF8	Stateless informatio		Do n	ot operate TW	CR	Wait for or perform the current operation	
	TWINT = 0						
0x00	Illegal START	No operation	0	1	1	x	Only affect the internal hardware;
	Or STOP						Send a STOP to the bus;
	The bus is wrong						The bus is released and cleared
							TWSTO bit

The status code 0xF8 indicates that there is no relevant information at this time because the TWINT flag is "0". This state may occur at TWI The port is not involved in serial transmission or the current transmission has not yet been completed.

State 0x00 indicates that a bus error occurred during serial transmission. Bus error when illegal START or STOP occurs It will happen. For example, there is START or STOP between address and data, address, and ACK. The bus error will be set TWINT. In order to recover from the error, TWSTO must be set and cleared by writing "1" to clear TWINT. This will make TWI The interface enters the unaddressed slave mode without generating a STOP, and releases SCL and SDA, and clears the TWSTO bit. Combination mode

In some cases, several TWI modes must be combined to achieve the desired job. For example, from the serial EEPROM

- 175 -

Page 182

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Read the data, the typical transmission includes the following steps:

- 1. The transmission must be initiated;
- 2. You must tell the EEPROM where the data should be read;
- 3. must complete the read operation;
- 4. The transmission must end.

Note that data can be transferred from the host to the slave, and vice versa. The host tells the slave to read the location of the data, using the master Machine sending mode. Next, read data from the slave, using the host receive mode. The direction of transmission will change. Host Must maintain the various stages of the bus control, all the steps are uninterrupted operation. If in a multi-host system,

Between 2 and 3 another host to change the location of the data read, then break the principle of the host to read the data location it is wrong. The direction of the data transfer is changed by sending a REPEATED START between the transfer address byte and the received data To achieve. After sending REPEATED START, the host still has bus control.

The fo	llowing	figure descri	bes the t	ransmission p	rocess:						
				MT					MR		
	s	SLA + W	А	ADDRESS	А	Rs	SLA + R	А	DATA	NA	Р
		from Maste	er to Slave						From Sla	ave to Master	

Combine multiple TWI modes to access the serial EEPROM diagram

Multi - host system and arbitration

If more than one host is connected to the same TWI bus, one or more of them may start the data transfer at the same time. The TWI protocol ensures that in this case, through an arbitration process, one of the hosts is allowed to transmit and will not be lost data. Here the two host to try to send data from the machine as an example to describe the bus arbitration process.

There are several different situations that will result in a bus arbitration process:

- Two or more hosts communicate with a slave at the same time. In this case, both the host and the slave do not know There is competition on the bus;
- Two or more hosts simultaneously access different data or operating directions for the same slave. In this case will be Arbitration occurs at the READ / WRITE bit or data bit. When there are other hosts to the SDA line to send "0", to SDA A host that sends "1" online will fail the arbitration. The failed host will switch to unreserved slave mode, or Waiting for the bus to send a new START signal, which depends on the operation of the application software.
- Two or more hosts access different slaves. In this case, bus arbitration occurs in the SLA phase. When there is When the host sends a "0" to the SDA line, the host that sends "1" to the SDA line will fail the arbitration. In SLA total A host that fails during a quorum will switch to slave mode and check if it is being addressed by the host of the bus control. If addressed, it will enter SR or ST mode, depending on the READ / WRITE bit following the SLA. If not Addressing, it will switch to unreserved slave mode, or wait for the bus to be idle when sending a new START message Number, depending on the operation of the application software.

The following figure describes the process of bus arbitration:

- 176 -

Page 183

LGT8FX8D Series - Program	nming Manual 1.	LogicGreen Technologies Co., LTD			
START	SLA + R /	w		DATA	STOP
	Arbitration lost in SL	A + R / W			
Address / General	Call?	NO	0x38	Enter Not Addressed Slave Mode; Release TWI Bus; Transmit START at bus free;	
	YES				
Direction	n	WRITE	0x68 0x78	Receive Data Byte; Send ACK / NACK;	
		READ	0xB0	Send Data Byte; Receive ACK / NACK;	

Bus arbitration process

Register definition

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

LogicGreen Technologies Co., LTD

TWI register list								
register	address	Defaults	description					
TWBR	0x B8	0x00	TWI bit rate register					
TWSR	0xB9	0x00	TWI status register					
TWAR	0xBA	0x00	TWI address register					
TWDR	0xBB	0x00	TWI data register					
TWCR	0xBC	0x00	TWI control register					
TWAMR	0xBD	0x00	TWI address mask register					

TWBR - TWI bit rate register

			TWBR -	TWI bit rate 1	register						
Address: 0	xB8		Default: 0x00								
Bit	7	6	5	4	3	2	1	0			
Name TWBR7		TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0			
$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}			
Initial	0	0	0	0	0	0	0	0			
Bit N	lame	description									
		TWI bit rat	e selection con	trol bit.							
7.0 7100	D [7 0]	TWBR is the	ne bit rate gene	rator division fa	actor. The bit ra	ate generator is	a divider used	in the host			
7: 0 TWBR [7: 0]		Mode gene	Mode generates an SCL clock. The bit rate is calculated as follows:								
		$f_{scl} = f_{sys} /$	(16 + 2 * TWB	R * 4 twps).							

- 177 -

Page 184

LGT8FX8D Series - Programming Manual 1.0.5

Series Trogramming Standard Toto

TWSR - TWI status register TWSR - TWI status register Address: 0xB9 Default: 0xF8 Bit 7 6 5 4 3 2 1 0 TWS7 TWS6 TWS5 TWS4 TWS3 TWPS1 TWPS0 Name R/W R / W R / W R / W R / W R / W R / W R / WR / W Initial 1 1 1 1 0 0 0 1 description Bit Name TWI status flag. 5-bit TWS response TWI logic and bus status. Different status values have different meanings, specific 7: 3 TWS [7: 3] See the description of TWI operating mode. The value read from TWSR includes a 5-bit status value and a 2-bit pre-score Frequency control bit, in the detection state should be blocked pre-divide bit is "0". This is state detection independent of pre-division Frequency setting. Keep it. 2 -TWPS1 TWI prescaler control high. 1 TWPS1 and TWPS0 together form TWPS $\left[1:0\right]$ to control the bit rate prescaler, and TWBR Together control the bit rate.

Together control the bit rate.
0 TWPS0 TWI prescaler control low.
TWPS0 and TWPS1 together form TWPS [1: 0] to control the bit rate prescaler, and TWBR
Together control the bit rate.
TWPS [1: 0] Prescaler factor
0 1

1	4
2	16
3	64

TWAR - TWI address register

TWAR - T	WI address re	egister									
Address: 0:	xBA			Default: 0x00							
Bit	7	6	5	4	3	2	1	0			
Name TWAR6		TWAR5	TWAR4	TWAR3	TWAR2	TWAR1	TWAR0	TWGCE			
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	\mathbf{R} / \mathbf{W}							
Initial	0	0	0	0	0	0	0	0			

Bit	Name	description
		TWI slave address bits.
7: 1 TWA [6: 0]	VA [C 0]	TWA is the TWI slave address. When TWI is operating in slave mode, TWI will enter this address
	VA [6: 0]	Line response. Host mode does not require this address. But in the multi-host system, also need to set the slave address to
		Other host access.

- 178 -

Page 185

LGT	8FX8D Se	ries - Prograi	mming Manual 1	T8FX8D Series - Programming Manual 1.0.5							
	0	TWGCE	TWI broadcast i When the TWGe When setting the When TWGCE	dentification of CE bit is set to TWGCE bit is set and the	enable control b o "1", the TWI to "0", the TWI received addres	oit. bus broadcast i I bus broadcast is frame is 0x00	dentification is recognition is), the TWI moc	enabled. disabled. lule responds to	o this bus broadc	cast.	
	TWDR TWDR -	- TWI data TWI data reg	a register ister								
	Address:	0xBB				Defaul	t: 0xFF				
	Bit	7	6	5	4	3	2	1	0		
	Name	TWD7	TWD6	TWD5	TWD4	TWD3	TWD2	TWD1	TWD0		
	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W	$\mathbf{R} \ / \ \mathbf{W}$	R / W	R / W	R / W		
	Initial	1	1	1	1	1	1	1	1		
	Bit	Name	description								

		TWI data register.
7:0	TWD [7:0]	TWD is the next byte to be transmitted on the bus, or the last byte received from the bus
		byte.

TWCR - TWI control register

TWCR - TWI control register									
Address: (0xBC	Default: 0x00							
Bit	7	6	5	4	3	2	1	0	
Name	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W	R / W	R	R / W	-	R / W	
Initial	0	0	0	0	0	0	0	0	

description Bit Name

TWI interrupt flag.

When TWI completes the current job and wants the application to intervene, the hardware sets the TWINT bit. If the whole

7

6

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

	When the bit is set and the TWIE bit is set, a TWI interrupt will be generated and the MCU will execute the TWI interrupt service routine. When the TWINT flag is set, the low level of the SCL signal will be extended.							
IWINI	The TWINT flag can only be cleared by writing a "1" to this bit. Even if the interrupt service routine is executed,							
	The hardware will not automatically clear the bit. Also note that clearing this bit will immediately turn on TWI. because							
	In this case, before clearing the TWINT bit, first complete the TWAR, TWAMR, TWSR and TWDR							
	Access to the device.							
	TWI enables response control bits.							
	The TWEA bit controls the generation of the acknowledge pulse. When the TWEA bit is set to "1", one of the following conditions is satisfied							
TWEA	, A response pulse will be generated on the TWI bus:							
	1) Receives the slave address of the device;							
	2) received a call when TWGCE is set;							
	- 179 -							

Page 186

LGT8FX8D S	eries - Progra	mming Manual 1.0.5 LogicGreen Technologies Co., LTD
		3) Receive one byte of data in the host receive or slave receive mode.
		When the TWEA bit is set to "0", the device is temporarily disconnected from the TWI bus. After the device is set,
		Complex address recognition.
		TWI start status control bit.
		The TWSTA bit needs to be set when the CPU wishes to become a host on the TWI bus. The hardware will detect the total
5	TWSTA	Line is available, when the bus is idle, the bus on the start state. When the bus is not idle,
		TWI will wait until the detection of the stop state occurs, and then generate a starting state to declare that they want to become
		Host. The software must clear the TWSTA bit after sending the start status.
		TWI stop status control bit.
		In the host mode, when the TWSTO bit is "1", TWI will generate a stop state on the bus, and then
4	TWSTO	Clear the TWSTO bit. In the slave mode, setting the TWSTO bit enables the TWI to be restored from the error state
		come. This will not produce a stop state, only let TWI return to a defined unreserved from
		Mode, while releasing the SCL and SDA signal lines to the high impedance state.
		TWI write conflicting flag.
3	TWWC	When the TWINT flag is low, writing the TWDR register bit will be set in the TWDR register. When TWINT
		When the flag bit is high, writing the TWDR register will clear the TWWC flag.
		TWI enable control bit.
		The TWEN bit enables TWI operation and activates the TWI interface. When the TWEN bit is set to "1", TWI is controlled
2	TWEN	The IO pin is connected to the SCL and SDA pins. When the TWEN bit is set to "0", the TWI interface module is turned off
		Closed, all transmissions are terminated, including ongoing operations.
1	-	Keep it.
		TWI interrupt enable control bit.
0	TWIE	When the TWIE bit is set to "1" and the global interrupt is set, the TWINT flag is high
		Active TWI interrupt request.

TWAMR - TWI address mask register

			TWAMR -	TWI address I	nask register					
Address: 0	xBD		Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
Name TW	AR6	TWAR5	TWAR4	TWAR3	TWAR2	TWAR1	TWAR0	TWGCE		
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W		
Initial	0	0	0	0	0	0	0	0		
Bit N	lame	description								
		TWI address	s mask control	bit.						
7-1 TWA	M [6: 0]	TWAM is a	7-bit TWI slav	e address mask	control. Each	bit of TWAM i	s used to block	(disable)		
7. 1 I WA	WI [0. 0]	The correspo	The corresponding address bits in TWAR. When the mask bit is set, the address match logic ignores the received address							
		Bit and TWA	A corresponding	g bit compariso	on results. The	following figur	e shows the de	tails of the address	matching logic.	
0	-	Keep it.								

- 180 -

Page 187

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

TWI address matching logic

The following figure shows the TWI address matching logic block diagram:

TWA0	Address Bit Match 0	
addr0		
TWAM0	Addr Match	

Address Bit Match 6

TWI Address Matching Logical Structure

- 181 -

LogicGreen Technologies Co., LTD

Op amp / comparator θ

- 12mV more accurate
- Supports 2 off-chip analog inputs
- Supports multiplexing output from ADC
- · Supports output from internal OPAMP op amp
- Supports internal 1.25 / 2.56V reference voltage input
- Internal integrated 8-bit DAC analog-to-digital converter
- With the pre-amplifier circuit to achieve over-current / over-voltage protection
- Programmable output filter control

Summary

The op amp / comparator module integrates an input mode configurable front stage op amp and a built-in 8-bit DAC analog ratio Compared to the front; op amp support can be configured forward / reverse input mode, fixed forward 12 times, reverse 11 times the amplification gain, Can be combined with analog comparator 8-bit DAC, to achieve a flexible signal detection; op amp 0 output can also be through the modulus Converter (ADC) for more accurate processing; analog comparator on the positive value and the value of the negative comparison, when the positive pole Is higher than the voltage on the negative pole, the output of the analog comparator ACO is set. When the level of ACO changes, The edge of the signal can be used to trigger an interrupt. The output signal ACO can also be used to trigger the input capture and pairing of the timer counter 1 The PWM output generated by the timer is controlled. The analog comparator integrates an 8-bit precision digital-to-analog converter (DAC) The internal reference voltage can be decomposed into 256 different reference voltage levels.

Op amp / comparator 0 module structure diagram

11R

Operational Amplifier

- 182 -

Page 189

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Input of the front op amp

The OPA0 analog front end is responsible for the multiplex input of the analog input channels, the forward / reverse input mode switching, and the input signal Do magnification. OPA0 amplified signal is divided into two, respectively, connected to the ADC input channel and analog comparator (AC) Of the negative input. In other words, the op amp processing signal, you can directly use the comparator for fast processing, you can also

Through ADC conversion to get accurate results, which can achieve more complex functions.

OPA0 analog all part of the OPA0 controller under the control of the work; OPA0 analog part of the switch input or change

Input mode, the output has a stable process, OPA0 controller is responsible for generating the controller timing, to avoid not

Stable output has an effect on the post-stage circuit.

The preamplifier supports two analog input channels: OPA0 / 1. Two channels can be switched through software, can also pass The OPA controller inside the chip automatically switches from time to time. The channel switching time has an 8-bit timer individually controlled, Timer clock source can be selected for the system clock or internal RC32M 32-way (1MHz), to achieve more flexible Of the channel switching cycle to meet the needs of different applications.

When the op amp function is enabled, it is necessary to set the control bits associated with the op amp pin input of the DIDR1 register to avoid I / O numbers The functional part has an effect on the op amp's analog input channel. For details, refer to the Register Definitions section of this chapter.

Opener channel switching mechanism

In the automatic timing channel switching mode, in order to avoid the interference generated during the channel switching process, the channel switching action and simulation Comparator output filter linkage, to achieve a smooth channel switch. Users can also adjust the associated registers to achieve Complete control of the switching process.

OPA0 channel switching state machine is responsible for real-time switching input channel, you can only one op amp on the basis of two The effect of the road input. OPA0 switches the channel and switches the input mode corresponding to the channel. So we can

To achieve two positive input, two reverse input and all the way forward all the way to the three input combinations.

OPA0 in the process of switching the channel, the op amp output will have an unstable change, the channel switching status opportunities in the The switching channel simultaneously generates a control signal which is used to control the next stage circuit for processing the op amp output. Such as analog comparators, analog comparators can use this control information to its output to do the appropriate filtering process, so as to avoid Road switching produces instability and interference.

Channel switching timing:

OPA_Channel 1

Handover Period (Tcsv)

OPA_Channel 0

OPA transition period (T CHV)

```
AC Sample timing
```

As shown above, T csv is the OPA0 channel switching cycle, OPA0 start channel switching, there is an inherent build time (T $_{CHV}$), during which time the output of OPA0 may be unstable or can not immediately respond to the current state of the channel, By configuring the T $_{CHV}$ cycle, let the next level filter out the interference introduced by the switching channel.

- 183 -

Page 190

OPA0 OPA1

R OPA0 IIR

OPA0 channel switching state machine contains an internal 8-bit counter, used to set the channel switching cycle (T csv), The count clock can be the default system clock, or you can select 32 of the 32MHz RC oscillator on the chip (1 MHz). So that the user can choose the appropriate switching cycle according to the specific application requirements. For some reaction to trigger Requires fast applications, such as overcurrent protection, you can choose a faster count clock, configure a smaller counting cycle. In addition to the timer Used to generate T csv, also used to generate T cHv cycles. The user can control the timing of channel switching through registers.

OP

The channel switching timer, in addition to the timing used to generate channel switching, can also be used as a separate 8-bit timer Use, the timer overflow after the interrupt signal. The user can switch the input channel using the software by interrupting the service. in order to So that the software switch channel is more convenient, OPA0 controller to achieve a software switching channel dedicated control register (OP0CRA) The user only needs to write 1 to the SCSW bit in the register to implement a channel switch. When using the software timer to switch Channel, you can still configure the OP0CRB to achieve T CHV timing control.

The user can also use the channel switching timer as a timer that is completely independent of the OPA0 controller. Other systems require timing tasks. The software only needs to be set by setting the OPTEN bit of the OP0CRB register Enable timer, timer count clock selection is also a TCKCSR register AFCKS bit control, timer overflow The preset is set by the OP0TCNT register.

Analog comparator input

Both inputs of the analog comparator support a variety of optional input sources. The positive input supports the off-chip pins ACIN0 and The 8-bit DAC, based on an internal reference, is selected by the ACBG in the ACSR of the AC control status register Bit to control, see the register description. The negative input supports the off-chip pin ACIN1, the output of the ADC multiplexer, and from Op amp OPAMP output. The comparator negative input channel is selected by the ADCCSRB register from the ADC module ACME00 / 01 bits to control. When ACIN1 is selected for configuration, the AIND1 bit of the DIDR1 register must be set at the same time, Otherwise the input of ACIN1 will not be selected for the negative input of the analog comparator.

- 184 -

Page 191

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The following table shows the input control table for the analog comparator.

AC0 negative input control							
ACME01	ACME00	DIDR1 [1]	MUX [2:0]	AC Negative Input			
0	0	0	xxx	ADC [xxx]			
0	0	1	xxx	AIN1			
0	1	1	xxx	ADC [xxx]			
0	1	х	000	ADC0			
0	1	х	001	ADC1			
0	1	х	010	ADC2			
0	1	х	011	ADC3			
0	1	х	100	ADC4			
0	1	х	101	ADC5			
0	1	х	110	ADC6			
0	1	х	111	ADC7			
1	х	х	х	OPA0			

Comparator output filter

Analog comparator real-time response to the input signal changes, when the input signal on the interference, the same analog comparator

The output will appear similar to the interference or instantaneous transition. This interference may result in erroneous operation. So in the simulation

Comparator output, in series with a filter circuit; filter circuit is divided into two parts, first with the op amp OPA0 with

Use the output hold circuit, the OPA0 output analog input comparator input, if the open OPA0

The automatic channel switching function, in the OPA0 channel switching intermittent, analog comparator output will be held here to avoid

The interference caused by the unstable output during OPA0 switching. Behind this hold circuit, it is a pair of output for the comparator

With the width of the filter circuit, the user can register configuration, filter out the change after the stability of the smaller interference signal. filter

The clock signal used by the booster can be from the system clock, or 32 minutes for the internal 32MHz RC clock frequency

Frequency (1MHz). The user can select the appropriate filtering parameters according to the interference characteristics of the application environment.

ACO Before Filter

ACO After Filter

Invalid ACO

Valid ACO output

Comparator output filter timing

AC0 output filter is enabled by the ACFEN bit of the OPOCRA register. The filter clock is passed through the TCKCSR register The AFCKS bit is selected and the width of the filter can be set by the AFTCNT register. Please refer to this section for details Definition part.

- 185 -

Page 192

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Comparator output and PWM control

LGT8FX8D series can output up to six-channel PWM signal, which by the Timer0 and Timer1 generated PWM The signal can be used with the op amp / comparator module. The op amp / comparator output can be used to directly turn off the PWM signal, In order to achieve a more flexible PWM protection program.

Op amp input has two channels, you can choose through the software configuration of any one channel or two channels at the same time as a control PWM output signal source. Refer to Timer Counter 0/1 for the definition of the DSX0 / 1 register.

If the op amp function is not required in the application, the output of the comparator can also be used as a control to turn off the PWM output Signal, so that the other channels of the comparator can be used to control the PWM output. At this point through the DSX0 / 1 need to send The register enables the PWM output control function of the comparator op amp channel 0.

Internal reference with 8-bit digital-to-analog conversion (DAC0)

The LGT8FX8D family integrates a calibratable reference voltage source with an output voltage of 1.25V and 2.56V configurable;

This internal reference voltage provides a reference voltage source for the ADC and the analog comparator.

Inside the analog comparator, an 8-bit precision digital-to-analog converter (DAC) is integrated, and the digital-to-analog converter is The internal reference voltage is the reference source, producing a maximum of 256 output voltages. The DAC output can be used as a negative input for analog comparators Can also be output to the chip pin as an external reference voltage. When using the DAC's output drive other peripheral circuits

When an external voltage follower is required. The DAC output is controlled by the DACEN0 / 1 bits of the IOCR register, respectively, and the DAC outputs

The voltage is controlled by the DALR0 register. Refer to the Register Definitions section of this chapter for detailed definitions.

The DALR0 register defines the relationship with the DAC output voltage:

DALR0	DAC0 output voltage
0x00	IVREF / 256
0x01	2 * IVREF / 256
0x02	3 * IVREF / 256
0xFC	253 * IVREF / 256
0xFD	254 * IVREF / 256

0xFE 0xFF

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

LogicGreen Technologies Co., LTD

255 * IVREF / 256 IVREF

- 186 -

Page 193

LGT8FX8D Series - Programming Manual 1.0.5

Register definition

OPA0 control register - OP0CRA

OPA0 control register A								
OP0CRA: 0x58	3			Default: 0x00)			
\mathbf{R} / \mathbf{W}		R / W						
Initial				0x00				
Bit definition								
[0]	CH0EN OI	PA0 Channel 0 e	nable control,	1: enable				
[1]	CHIEN OF	PA0 Channel 1 e	nable control,	1: enable				
[2]	CH0IM cha	annel 0 reverse in	nput mode ena	bled, 1: reverse i	input, 0: forward input			
[3]	CH1IM cha	annel 1 reverse i	nput mode ena	bled, 1: reverse i	input, 0: positive input			
[4]	-	Keep it						
[6]	ACEEN	Enable the analog comparator output filter function, 1: enable						
[5]	ACTEN Refer to the Analog Comparator section for the filtering function of the analog comparator output							
[6]	ACCH	Read back the	currently selec	ted OPA channe	21			
[0]	Ассн	Write 1 to perf	orm a channel	switch				
		Enable OPA0	module, OPAE	N set to 1, OPA	0 analog front end into working condition, the user also			
		Need to config	ure CH0EN /	CH1EN, in order	r to make OPA0 correct work, the following is OPA0 working mode			
		Definition:						
		CH0EN	CHIEN	OPAEN	Function Descriptions			
[7]	OPAEN	0	0	1	Channel 0 works independently			
		0	1	1	Channel 1 works independently			
		1	0	1	Channel 0 works independently			
		1	1	1	Dual channel mode of operation			
		x	x	0	OPA0 stops working			

OPA0 internal timer control register - OP0CRB

		OPA0 Timer Control Register B					
OP0CRB: 0x59		Default: 0x07					
\mathbf{R} / \mathbf{W}		R / W					
Initial		0x00					
Bit definition							
[6:0]	TCELL	$T {}_{\rm CSH}$ timing generation control, used to set the number of $T {}_{\rm CSH}$ cycles, can be set to 0, prohibit the production					
[6: 0]	тсяп	T CHV timing, so the channel switching will be completely controlled by the timing of the T csv					
		Timer enable control, 1: enable timer and timer interrupt function;					

[7]

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

OPTEN In the OPA0 dual-channel operation mode, the timer will be automatically enabled, but will not enable the timing interrupt can

- 187 -

Page 194

LGT8FX8D Series - Pro	ogramming Ma	nual 1.0.5	LogicGreen Technologies Co., LTD
OPA0 channel sw	itching timing	control register - OP0TCNT	
		OPA0 channel switching timing control	register
OP0TCNT / GP	IOR4: 0x5a	Default: 0x00	
R / W		R / W	
Initial		0x00	
Bit definition			
		T csv timing generation control, used to set the	number of T csv cycles; when the counter count is reached
	OP0TCNT	After OP0TCNT, the channel is switched on an	d the counter is cleared again.
[7:0]	GPIOR4		

When the OPA0 module is not enabled, this register can be used as a general purpose I / O register Use, can be used to temporarily store a byte of user data, timing fast read and write access

AC0SR - AC0 control and status registers

	ACOSR - AC0 control and status registers								
Address: 0x50 Default: 0x80									
Bit	7	6	5	4	3	2	1	0	
Name	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	R	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	1	0	0	0	0	0	0	0	

Bit	Name	description
		Analog Comparator Disable bit.
7	ACD	When the ACD bit is set to "1", the analog comparator is turned off.
		When the ACD bit is set to "0", the analog comparator is turned on.
		Analog comparator reference voltage selection control bit.
6	ACBG	When the ACBG bit is set to "1", the positive reference selects the internal reference as an input.
		When the ACBG bit is set to "0", the positive pin selects the external pin AIN0 as input.
		Analog comparator output status bit.
5	ACO	The analog comparator output is connected directly to the ACO bit after synchronization. The software can read the value of the ACO bit
		Gets the output value of the analog comparator.
		Analog comparator interrupt flag bit.
4	ACI	The ACI bit is set when the analog comparator output event triggers the interrupt mode defined by the ACIS bit.
4	ACI	The interrupt is generated when the interrupt enable bit ACIE is "1" and the global interrupt is set. Execute the analog comparator
		When the service routine is serviced, the ACI will be cleared automatically, or the ACI bit will be cleared by writing "1".
		Analog comparator interrupt enable bit.
3	ACIE	When the ACIE bit is set to "1" and the global interrupt is set, the analog comparator interrupt is enabled.
		When the ACIE bit is set to "0", the analog comparator interrupt is disabled.
2	ACIC	Analog Comparator Input Capture Enable bit.
		When the ACIC bit is set to "1", the input capture source of the timer counter 1 is derived from the analog comparator output
		ACO.
		When the ACIC bit is set to "0", the input capture source of timer counter 1 is from external pin ICP1.

1 ACIS1 Analog Comparator Interrupt Mode Control High.

The rising edge of ACO triggers

0 ADTS0 R/W 0

Page 195

LGT8FX8D Series - I	Program	uming Manual 1.0.5	LogicGreen Technologies Co., LTD
0 AC	CIS0	ACIS1 and ACIS0 together constitute ACIS [1: 0], used to contro Analog Comparator Interrupt Mode Control Low. ACIS0 and ACIS1 together constitute ACIS [1: 0], used to contro	ol the analog comparator interrupt trigger mode.
		ACIS [1:0]	Interrupt mode
		0	The rising or falling edge of ACO triggers
		1	Keep it.
		2	The falling edge of ACO triggers

3

ADCSRB - ADC CONTROL AND STATUS REGISTER B

			ADCSRB - ADC	CONTROL A	ND STATUS	REGISTER B	
Address: 0:	x7B	Default: 0x00					
Bit		7 6	5	4	3	2	1
Name	ACM	AE01 ACME00 A	CME11 ACME10		ACTS	ADTS2	ADTS1
R / W	R	/ W R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}
Initial		0 0	0	0	0	0	0
Bit	Name	description					
7	ACME01 C	omparator 0 Nega	ive input selection				
6	ACME00	00: Negative Se	lect External Input	ACIN0			
		01: Negative Select ADC multiplexed output					
		1X: Negative Selects the output of op amp 0					
5	ACME11 C	omparator 1 Negat	ive input selection				
4	ACME10	00: Negative Se	lect External Input	ACIN2			
		01: Negative Se	lect ADC multiplex	ed output			
		1X: Negative Se	elects the output of o	op amp 1			
3	ACTS	AC trigger sour	ce channel selection				
		0 - AC0 output a	as the ADC auto-co	nversion trigge	er source		
		1 - AC1 output a	as the ADC automat	ic conversion	trigger source		
2:0	ADTS	See ADC Regis	er Description.				

AFTCNT0 - Comparator 0 Filter Width Configuration Register

		AFTCN	T0 - Filter width configuration register		
Address: 0x	51		Default: 0xFF		
Bit			AFTCNT0 [7: 0]		
Name			AFTCNT0		
R / W			R / W		
Initial			0xFF		
Bit	Name	description			

- 189 -

Page 196

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The valid comparator changes, otherwise the change will be filtered out.

The filtered clock is derived from the system clock or the internal 12KHz RC oscillator

DALR0 - DAC0 output voltage control register

		DALR0 - DAC0 output voltage control regist	er
Address: 0	x52	Default: 0xFl	7
Bit		AFTCNT [7: 0]	
Name		AFTCNT	
\mathbf{R} / \mathbf{W}		R / W	
Initial		0xFF	
Bit	Name	description	
7: 0	DAL0	DAC0 output voltage control	
		0x00: DAO1 = IVREF / 256	
		0x01: DAO1 = 2 * IVREF / 256	
		0xFE: DAO1 = 255 * IVREF / 256	

0xFF: DAO1 = IVREF

DIDR1 - Digital input disable control register 1

			DIDR1 - Digita	al input disable of	control register	1			
Address: 0x7F			Default: 0x00						
Bit	7	6	5	4	3	2	1	0	
Name	OPAD3	OPAD2	OPAD1	OPAD0	AIND3	AIND2	AIND1	AIND0	
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	
Bit	Name	description							
7	OPAD3	OPA3 pin dig	gital input disab	le control bit					
6	OPAD2	OPA2 pin dig	gital input disab	le control bit					
5	OPAD1	OPA1 Pin Di	gital Input Disa	ble Control bit					

OPAD0	OPA0 pin digital input disable control bit
AIND3	ACIN3 pin digital input disable control bit
AIND2	ACIN2 pin digital input disable control bit
AIND1	ACIN1 Pin Digital Input Disable Control bit.
	When the AIND1 bit is set to "1", the digital input of pin AIN1 is disabled and remains zero. when
	When the analog comparator is enabled, the digital input function of AIN1 is not required, so AIND1 should be set.
	When the AIND1 bit is set to "0", the digital input of pin AIN1 is enabled and the signal on pin
	Input to the internal digital logic, then set the ACD bit, that is, turn off the analog comparator.

- 190 -

Page 197

LGT8FX8D Series - Programming Manual 1.0.5

AIND0

0

4

3

2

1

ACIN0 pin digital input disable control bit. When the AIND0 bit is set to "1", the digital input of pin AIN0 is disabled and remains zero. when When the analog comparator is enabled, the digital input function of AIN0 is not required, so AIND0 should be set. When the AIND0 bit is set to "0", the digital input of pin AIN0 is enabled and the signal on the pin can be

LogicGreen Technologies Co., LTD

Input to the internal digital logic, then set the ACD bit, that is, turn off the analog comparator.

- 191 -

Page 198

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

- Op amp / comparator 1
 - 12mV more accurate
 - Supports 2 off-chip analog inputs
 - Supports multiplexing output from ADC
 - Supports output from internal OPAMP op amp
 - Supports internal 1.25 / 2.56V reference voltage input
 - Internal integrated 8-bit DAC analog-to-digital converter
 - With the pre-amplifier circuit to achieve over-current / over-voltage protection
 - Programmable output filter control

Summary

The op amp / comparator module integrates an input mode configurable front stage op amp and a built-in 8-bit DAC analog ratio Compared to the front; op amp support can be configured forward / reverse input mode, fixed forward 12 times, reverse 11 times the amplification gain, Can be combined with analog comparator 8-bit DAC, to achieve a flexible signal detection; op amp 0 output can also be through the modulus Converter (ADC) for more accurate processing; analog comparator on the positive value and the value of the negative comparison, when the positive pole

Is higher than the voltage on the negative pole, the output of the analog comparator ACO is set. When the level of ACO changes, The edge of the signal can be used to trigger an interrupt. The output signal ACO can also be used to trigger the input capture and pairing of the timer counter 1 The PWM output generated by the timer is controlled. The analog comparator integrates an 8-bit precision digital-to-analog converter (DAC) The internal reference voltage can be decomposed into 256 different reference voltage levels.

Op amp / comparator 1 module structure diagram

- 192 -

Page 199

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Input of the front op amp

The OPA1 analog front end is responsible for the multiplexed input of the analog input channels, the forward / reverse input mode switching, and the input signal Do magnification. The OPA1 amplified signal is connected to the negative input of the analog comparator (AC).

OPA1 analog all part of the OPA1 controller under the control of the work; OPA1 analog part of the switch input or change Input mode, the output has a stable process, OPA1 controller is responsible for generating the controller timing, to avoid not Stable output has an effect on the post-stage circuit.

The preamplifier supports two analog input channels: OPA2 / 3. Two channels can be switched through software, can also pass The OPA controller inside the chip automatically switches from time to time. The channel switching time has an 8-bit timer individually controlled, Timer clock source can be selected for the system clock or internal RC32M 32-way (1MHz), to achieve more flexible Of the channel switching cycle to meet the needs of different applications.

When the op amp function is enabled, it is necessary to set the control bits associated with the op amp pin input of the DIDR1 register to avoid I / O numbers The functional part has an effect on the op amp's analog input channel. For details, refer to the Register Definitions section of this chapter.

Opener channel switching mechanism

In the automatic timing channel switching mode, in order to avoid the interference generated during the channel switching process, the channel switching action and simulation Comparator output filter linkage, to achieve a smooth channel switch. Users can also adjust the associated registers to achieve Complete control of the switching process.

OPA1 channel switching state machine is responsible for real-time switching input channel, you can only one op amp on the basis of two The effect of the road input. OPA1 switches the channel and switches the input mode corresponding to the channel. So we can To achieve two positive input, two reverse input and all the way forward all the way to the three input combinations.

OPA1 in the process of switching the channel, the op amp output will have an unstable change, the channel switching status opportunities in the The switching channel simultaneously generates a control signal which is used to control the next stage circuit for processing the op amp output. Such as analog comparators, analog comparators can use this control information to its output to do the appropriate filtering process, so as to avoid Road switching produces instability and interference.

Channel switching timing:

, 1 ,		
	OPA_Channel 1	
	Handover Period (Tesv)	OPA_Channel 0
	OPA transition period (T CHV)	AC Sample timing
(H	As shown above, T csv is the OPA1 channel switching cycle, OPA1 start T chv), during which time the output of OPA1 may be unstable or can i 3y configuring the T chv cycle, let the next level filter out the interference	channel switching, there is an inherent build time not immediately respond to the current state of the channel, ce introduced by the switching channel.
	- 193 -	

Page 200

OPA1 channel switching state machine contains an internal 8-bit counter, used to set the channel switching cycle (T csv), The count clock can be the default system clock, or you can select 32 of the 32MHz RC oscillator on the chip (1 MHz). So that the user can choose the appropriate switching cycle according to the specific application requirements. For some reaction to trigger Requires fast applications, such as overcurrent protection, you can choose a faster count clock, configure a smaller counting cycle. In addition to the timer Used to generate T csv , also used to generate T cHv cycles. The user can control the timing of channel switching through registers.

The channel switching timer, in addition to the timing used to generate channel switching, can also be used as a separate 8-bit timer Use, the timer overflow after the interrupt signal. The user can switch the input channel using the software by interrupting the service. in order to So that the software switch channel is more convenient, OPA1 controller to achieve a software switching channel dedicated control register (OP1CRA) The user only needs to write 1 to the SCSW bit in the register to implement a channel switch. When using the software timer to switch Channel, you can still configure the OP1CRB to achieve T CHV timing control.

The user can also use the channel switching timer as a timer that is completely independent of the OPA1 controller. Other systems require timing tasks. The software only needs to be set by setting the OPTEN bit of the OP1CRB register Enable timer, timer count clock selection is also a TCKCSR register AFCKS bit control, timer overflow The preset is set by the OP1TCNT register.

Analog comparator input

https://translate.googleusercontent.com/translate_f

LogicGreen Technologies Co., LTD

Both inputs of the analog comparator support a variety of optional input sources. The positive input supports the off-chip pins ACIN2 and The 8-bit DAC, based on an internal reference, is selected by the ACBG in the ACSR of the AC control status register Bit to control, see the register description. The negative input supports the off-chip pin ACIN3, the output of the ADC multiplexer, and from Op amp OPA1 output. The comparator negative input channel is selected by the ADCSRB register from the ADC module ACME10 / 11 bits to control. When ACIN1 is selected for configuration, the AIND1 bit of the DIDR1 register must be set at the same time, Otherwise the input of ACIN1 will not be selected for the negative input of the analog comparator.

- 194 -

Page 201

LGT8FX8D Series - Programming Manual 1.0.5

The following table shows the input control table for the analog comparator.

AC1 negative input control					
ACME11	ACME10	DIDR1 [3]	MUX [2:0]	AC Negative Input	
0	0	0	xxx	ADC [xxx]	
0	0	1	xxx	AIN3	
0	1	1	xxx	ADC [xxx]	
0	1	x	000	ADC0	
0	1	x	001	ADC1	
0	1	х	010	ADC2	
0	1	x	011	ADC3	
0	1	x	100	ADC4	
0	1	x	101	ADC5	
0	1	x	110	ADC6	
0	1	x	111	ADC7	
1	x	x	х	OPA1	

Comparator output filter

Analog comparator real-time response to the input signal changes, when the input signal on the interference, the same analog comparator The output will appear similar to the interference or instantaneous transition. This interference may result in erroneous operation. So in the simulation Comparator output, in series with a filter circuit; filter circuit is divided into two parts, first with the op amp OPA1 with Use the output hold circuit, in the OPA1 output analog comparator input input, if the open OPA1

The automatic channel switching function, in the OPA1 channel switching intermittent, analog comparator output will be held here to avoid The interference caused by the unstable output during OPA1 switching. Behind this hold circuit, it is a pair of output for the comparator With the width of the filter circuit, the user can register configuration, filter out the change after the stability of the smaller interference signal. filter The clock signal used by the booster can be from the system clock, or 32 minutes for the internal 32MHz RC clock frequency Frequency (1MHz). The user can select the appropriate filtering parameters according to the interference characteristics of the application environment

ACO Before Filter		
ACO After Filter	Invalid ACO	Valid ACO output
	Comparator output filter timing	

AC1 output filter is enabled by the ACFEN bit of the OP1CRA register. The filter clock is passed through the TCKCSR register The AFCKS bit is selected and the width of the filter can be set by the AFTCNT register. Please refer to this section for details

Definition part.

- 195 -

Page 202

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Comparator output and PWM control

LGT8FX8D series can output up to six-channel PWM signal, which by the Timer0 and Timer1 generated PWM The signal can be used with the op amp / comparator module. The op amp / comparator output can be used to directly turn off the PWM signal, In order to achieve a more flexible PWM protection program.

Op amp input has two channels, you can choose through the software configuration of any one channel or two channels at the same time as a control PWM output signal source. Refer to Timer Counter 0/1 for the definition of the DSX0 / 1 register.

If the op amp function is not required in the application, the output of the comparator can also be used as a control to turn off the PWM output Signal, so that the other channels of the comparator can be used to control the PWM output. At this point through the DSX0 / 1 need to send The register enables the PWM output control function of the comparator op amp channel 0.

Internal reference with 8-bit digital-to-analog conversion (DAC)

The LGT8FX8D family integrates a calibratable reference voltage source with an output voltage of 1.25V and 2.56V configurable; This internal reference voltage provides a reference voltage source for the ADC and the analog comparator.

Inside the analog comparator, an 8-bit precision digital-to-analog converter (DAC) is integrated, and the digital-to-analog converter is The internal reference voltage is the reference source, producing a maximum of 256 output voltages. The DAC output can be used as a negative input for analog comparators Can also be output to the chip pin as an external reference voltage. When using the DAC's output drive other peripheral circuits

When an external voltage follower is required. The DAC output is controlled by the DACEN0 / 1 bits of the IOCR register, respectively, and the DAC outputs The voltage is controlled by the DALR1 register. Refer to the Register Definitions section of this chapter for detailed definitions.

The DALR1 register defines the relationship with the DAC output voltage:

DALR1	DAC output voltag
0x00	IVREF / 256
0x01	2 * IVREF / 256
0x02	3 * IVREF / 256
0xFC	253 * IVREF / 256
0xFD	254 * IVREF / 256
0xFE	255 * IVREF / 256
0xFF	IVREF

LogicGreen Technologies Co., LTD

LGT8FX8D Series - Programming Manual 1.0.5

Register definition

OPA1 c	ontrol regist	er - OP1CRA
--------	---------------	-------------

	OPA1 control register A							
OP1CRA: 0x32	2			Default: 0x00				
\mathbf{R} / \mathbf{W}		R / W						
Initial		0x00						
Bit definition								
[0]	CH0EN OI	PA1 channel 0 er	able control, 1	: enable				
[1]	CH1EN O	PA1 Channel 1 e	nable control,	1: enable				
[2]	CH0IM ch	annel 0 reverse i	nput mode ena	bled, 1: reverse in	nput, 0: forward input			
[3]	CH1IM ch	IM channel 1 reverse input mode enabled, 1: reverse input, 0: positive input						
[4]	-	Keep it	Keep it					
[5] ACEEN	Enable the analog comparator output filter function, 1: enable							
[3]	ACTEN	Refer to the Analog Comparator section for the filtering function of the analog comparator output						
[6]	АССИ	Read back the currently selected OPA channel						
[0]	Accii	Write 1 to perf	orm a channel	switch				
		Enable OPA1 module, OPAEN set to 1, OPA1 analog front end into working condition, the user also						
		Need to config	ure CH0EN / (CH1EN, in order	to make OPA1 correct work, the following is OPA1 working mode			
		Definition:						
		CH0EN	CH1EN	OPAEN	Function Descriptions			
[7]	OPAEN	0	0	1	Channel 0 works independently			
		0	1	1	Channel 1 works independently			
		1	0	1	Channel 0 works independently			
		1	1	1	Dual channel mode of operation			
		x	x	0	OPA1 stops working			

OPA1 internal timer control register - OP1CRB

		OPA1 Timer Control Register B
OP1CRB: 0x3	33	Default: 0x07
R / W		R / W
Initial		0x00
Bit definition		
FC 01	TCEU	$T\ {}_{\text{CSH}}$ timing generation control, used to set the number of $T\ {}_{\text{CSH}}$ cycles, can be set to 0, prohibit the production
[6: 0]	ICSH	$T_{\ CHV}$ timing, so the channel switching will be completely controlled by the timing of the $T_{\ CSV}$
		Timer enable control, 1: enable timer and timer interrupt function;
[7]	OPTEN	In the OPA1 dual-channel operation mode, the timer will automatically enable, but will not enable the timing interrupt
		can

- 197 -

Page 204

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

OPA1 Channel Switching Timing Control Register - **OP1TCNT**

OPA1 channel switching timing control register

OP1TCNT / GPIOR1: 0x34	Default: 0x00
R / W	R / W
Initial	0x00

Bit definition

T csv timing generation control, used to set the number of T csv cycles; when the counter count is reached

OP1TCNT, start the channel switch, while the counter cleared to start again.

[7:0] OP1TCNT GPIOR1

When the OPA0 module is not enabled, this register can be used as a general purpose I / O register Use, can be used to temporarily store a byte of user data, timing fast read and write access

$AC1SR\xspace{-}AC1$ control and status register

	AC1SR - AC1 control and status register								
Address: 0	x2F				Default: 0x80)			
Bit	7	6	5	4	3	2	1	0	
Name	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	
\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	R	R / W	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	
Initial	1	0	0	0	0	0	0	0	

Bit	Name	description				
		Analog Comparator Disable bit.				
7	ACD	When the ACD bit is set to "1", the analog comparator is turned off.				
		When the ACD bit is set to "0", the analog comparator is turned on.				
		Analog comparator reference voltage selection control bit.				
6	ACBG	When the ACBG bit is set to "1", the positive reference selects the internal reference as an input.				
		When the ACBG bit is set to "0", the positive pin selects the external pin AIN0 as input.				
		Analog comparator output status bit.				
5	ACO	The analog comparator output is connected directly to the ACO bit after synchronization. The software can read the value of the ACO bit				
		Gets the output value of the analog comparator.				
		Analog comparator interrupt flag bit.				
4	ACI	The ACI bit is set when the analog comparator output event triggers the interrupt mode defined by the ACIS bit.				
4 ACI		The interrupt is generated when the interrupt enable bit ACIE is "1" and the global interrupt is set. Execute the analog comparator				
		When the service routine is serviced, the ACI will be cleared automatically, or the ACI bit will be cleared by writing "1".				
		Analog comparator interrupt enable bit.				
3	ACIE	When the ACIE bit is set to "1" and the global interrupt is set, the analog comparator interrupt is enabled.				
		When the ACIE bit is set to "0", the analog comparator interrupt is disabled.				
2	ACIC	Analog Comparator Input Capture Enable bit.				
		When the ACIC bit is set to "1", the input capture source of the timer counter 1 is derived from the analog comparator output				
		ACO.				
		When the ACIC bit is set to "0", the input capture source of timer counter 1 is from external pin ICP1.				
1	ACIS1	Analog Comparator Interrupt Mode Control High.				

- 198 -

Page 205

ACIS1 and ACIS0 together constitute ACIS [1: 0], used to control the analog comparator interrupt trigger n							
0	ACIS0 Analog Comparator Interrupt Mode Control Low.						
		ACIS0 and ACIS1 together constitute ACIS [1: 0], used to control the analog comparator interrupt trigger mode.					
		ACIS [1: 0]	Interrupt mode				
		0	The rising or falling edge of ACO triggers				

0	The rising or falling edge of ACO triggers
1	Keep it.
2	The falling edge of ACO triggers
3	The rising edge of ACO triggers

LogicGreen Technologies Co., LTD

ADCSRB - ADC CONTROL AND STATUS REGISTER B

ADCSRB - ADC CONTROL AND STATUS REGISTER B

Address: 0x7B Default: 0x00

LGT8FX8D Series - Programming Manual 1.0.5

Bit		7 6	5	4	3	2	1	0		
Name	ACM	IE01 ACME00 AC	CME11 ACME10		ACTS	ADTS2	ADTS1	ADTS0		
R / W	R	/ W R / W	R / W	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W		
Initial		0 0	0	0	0	0	0	0		
Bit	Name	description								
7	ACME01 C	omparator 0 Negat	ive input selection							
6	ACME00	00: Negative Sel	ect External Input	ACIN0						
		01: Negative Sel	ect ADC multiple:	xed output						
		1X: Negative Se	lects the output of	op amp 0						
5	ACME11 C	ACME11 Comparator 1 Negative input selection								
4	ACME10	00: Negative Sel	ect External Input	ACIN2						
		01: Negative Sel	ect ADC multiple:	ked output						
		1X: Negative Se	lects the output of	op amp 1						
3	ACTS	AC trigger source	e channel selection	n						
		0 - AC0 output a	s the ADC auto-co	onversion trigge	er source					
		1 - AC1 output a	s the ADC automa	tic conversion	trigger source					
2:0	ADTS	See ADC Regist	er Description.							

AFTCNT1 - Comparator 1 Filter Width Configuration Register

		AFT	CNT - Filter width configuration register
Address: 0x2	30		Default: 0xFF
Bit			AFTCNT1 [7: 0]
Name			AFTCNT1
\mathbf{R} / \mathbf{W}			R / W
Initial			0xFF
Bit	Name	description	

- 199 -

Page 206

LGT8FX8D Series -	Programming N	Manual 1.0.5	LogicGreen Technologies Co., LTD			
7: 0	AFCTR1	Configure the filter acquisition cycle setting, the comparat	filter acquisition cycle setting, the comparator output must remain set to the length of the cycle in order to be considered			
		The valid comparator changes, otherwise the change will be	be filtered out.			
		The filtered clock is derived from the system clock or the	internal 12KHz RC oscillator			

DALR1 - DAC1 output voltage control register

		DALR -1 DAC1 output voltage control regist	e
Address: 0	x31	Default: 0xF	F
Bit		DALR1 [7: 0]	
Name		DALR1	
\mathbf{R} / \mathbf{W}		R / W	
Initial		0xFF	
Bit	Name	description	
7: 0	DALR1	Set DAC1 voltage output control	
		0x00: DAO1 = IVREF / 256	
		0x01: DAO1 = 2 * IVREF / 256	
		0xFE: DAO1 = 255 * IVREF / 256	
		0xFF: DAO1 = IVREF	

DIDR1 - Digital input disable control register 1

	DIDR1 - Digital input disable control register 1								
Address: ()x7F				Default: 0x	00			
Bit	7	6	5	4	3	2	1	0	
Name	OPAD3	OPAD2	OPAD1	OPAD0	AIND3	AIND2	AIND1	AIND0	
\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	R / W	R / W	R / W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	
Initial	0	0	0	0	0	0	0	0	
Bit	Name	description							
7	OPAD3	OPA3 pin di	gital input disab	ole control bit					
6	OPAD2	OPA2 pin di	OPA2 pin digital input disable control bit						
5	OPAD1	OPA1 Pin Di	OPA1 Pin Digital Input Disable Control bit						
4	OPAD0	OPA0 pin di	OPA0 pin digital input disable control bit						
3	AIND3	ACIN3 pin d	ligital input disa	able control bit					
2	AIND2	ACIN2 pin d	ligital input disa	able control bit					
1	AIND1	ACIN1 Pin I	Digital Input Di	sable Control bi	t.				
		When the AI	ND1 bit is set t	o "1", the digita	l input of pin A	IN1 is disabled	and remains ze	ro. when	
		When the an	alog comparato	r is enabled, the	digital input fu	nction of AIN1	is not required	, so AIND1 shoul	d be set.

When the AIND1 bit is set to "0", the digital input of pin AIN1 is enabled and the signal on pin

- 200 -

Page 207

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

0 AIND0

ACIN0 pin digital input disable control bit.

When the AIND0 bit is set to "1", the digital input of pin AIN0 is disabled and remains zero, when When the analog comparator is enabled, the digital input function of AIN0 is not required, so AIND0 should be set. When the AIND0 bit is set to "0", the digital input of pin AIN0 is enabled and the signal on the pin can be Input to the internal digital logic, then set the ACD bit, that is, turn off the analog comparator.

Input to the internal digital logic, then set the ACD bit, that is, turn off the analog comparator.

- 201 -

Page 208

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ADC analog - to - digital converter

- \bullet 12-bit resolution, DNL is \pm 1LSB, INL is \pm 1.5LSB
- Sampling rate up to 250KSPS at maximum resolution
- 8 multiplexed single-ended input channels
- The ADC input voltage range is 0-VCC
- Continuous conversion or single conversion mode
- Optional internal 1.25V / 2.56V reference voltage
- Supports AVCC and external reference voltage input
- 1 / 4VCC power supply voltage detection channel
- Input channel for internal op amp 0
- Automatic start conversion mode based on interrupt source
- The conversion result supports the optional left-justified mode
- ADC conversion end interrupt

Summary

ADC structure diagram

The analog-to-digital converter is a 12-bit successive approximation ADC. The ADC is connected to an 8-channel analog multiplexer Sampling from port A's 8 single-ended input voltages, the single-ended input voltage is based on 0V (GND).

ADC operation
The ADC converts the input analog voltage into a 10-bit digital quantity by successive approximation. The minimum value represents GND, The maximum value represents the reference voltage minus 1LSB. The reference voltage source can be the ADC's supply voltage AVCC, the external reference voltage AREF or internal 1.25V / 2.56V reference voltage is selected by writing the REFS bit of the ADMUX register.

The analog input channels can be selected by writing the MUX bits of the ADMUX register. Any ADC input pin, external base

- 202 -

Page 209

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The quasi-voltage pin, and the internal reference voltage source, can be used as a single-ended input to the ADC. ADC input pin 0-5 can be used as ADC differential input. The differential gain can be selected by writing the GAIN bit of the ADTMR register.

The ADEN bit of the ADCSRA register can be used to start the ADC. When the ADEN is cleared, the ADC does not consume power. Turn on the ADC before entering sleep mode.

The ADC conversion result is 12 bits, which are stored in the ADC data registers ADCH and ADCL. By default, the conversion result is Right-aligned, but can be left-aligned by setting the ADLAR bit in the ADMUX register.

If you set the conversion result to the left justify, and the maximum requires only 8 bits of conversion accuracy, then just read the ADCH is enough The. Otherwise read the ADCL, and then read the ADCH, to ensure that the contents of the data register is the result of the same conversion. Once ADCL is read, the data registers ADCL and ADCH are latched and the ADCH conversion result can be updated to Data registers ADCL and ADCH.

The end of the ADC conversion can trigger an interrupt. Even if the end of the conversion occurs between reading ADCL and ADCH, the interrupt will still fire.

Start a conversion

Setting the ADSC bit to the ADC bit to write "1" can initiate a single conversion. This bit remains high during conversion The hardware is cleared after the conversion is complete. If the channel is changed during the conversion process, the ADC will do this before changing the channel A conversion.

ADC conversion has a different trigger source. Setting the ADCSRA register's ADC auto-enable enable bit ADATE can be enabled Move trigger. Setting the ADCSRB register's ADC trigger selection bit ADTS can select the trigger source. When the selected trigger signal When a rising edge is generated, the ADC prescaler is reset and begins to convert. This provides a transition at a fixed time interval method. Even if the trigger signal persists after the conversion, a new conversion will not be initiated. If touched during the conversion process The signal also produces a rising edge, the rising edge will also be ignored. Even if a specific interrupt is disabled or a global interrupt is made The bit is "0" and its interrupt flag will still be set. This triggers a transition without generating an interrupt. But for The new interrupt must be triggered when the next interrupt event occurs, and the interrupt flag must be cleared.

Using the ADC interrupt flag as the trigger source, you can start the next ADC conversion after the current conversion is complete. The After the ADC will work in continuous conversion mode, continuous sampling and ADC data register to update. First turn Is changed by writing "1" to the ADSCRA register ADSC bit. In this mode, subsequent ADC conversions are not followed Depending on whether the ADC interrupt flag ADIF is set.

If automatic triggering is enabled, the ADSC setting the ADCSRA register will initiate a single conversion. The ADSC logo can also be used for inspection Whether the conversion is in progress. Regardless of how the conversion was initiated, ADSC was always "1" during the conversion process.

Prescaler and ADC conversion timing

Under the default conditions, the successive approximation circuit requires an input clock from 300 kHz to 3 MHz for maximum accuracy. Such as If the required conversion accuracy is less than 12 bits, then the input clock frequency can be higher than 3MHz, in order to achieve a higher sampling rate.

The ADC module includes a prescaler that can generate an acceptable ADC input clock from the system clock. Prescaler The ADPS bits are set by the ADCSRA register. Setting ADEN of the ADCSRA register will enable ADC, pre-division

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The frequency counting starts. As long as the ADEN bit is "1", the prescaler continues counting until ADEN is cleared.

ADSCRA register ADSC is set, the single-ended conversion starts at the rising edge of the next ADC clock cycle. positive A constant conversion requires 15 ADC clock cycles. ADC enable (ADEN of the ADCSRA register is set) requires 50 The ADC input clock cycle initializes the analog circuit before it can be effectively converted for the first time.

During ADC conversion, the sample is held at 1.5 ADC input clocks after the conversion is started, and the first ADC The result of the conversion is output after the start of the 14.5 ADC input clock. After the conversion, the ADC result is fed ADC data register, and the ADIF flag is set. ADSC is cleared at the same time. The software can then set ADSC again Flag or auto trigger to start a new conversion.

Change the channel or reference source

MUX and REFS in the ADMUX register are individually buffered through temporary registers. The CPU can be used for temporary registers Random access. Before the switch is started, the CPU can configure the channel and reference source at any time. In order to ensure that the ADC has Adequate sampling time, once the conversion starts, do not allow the channel and the choice of the source configuration. After the conversion is complete (ADCSRA Register ADIF is set), the channel and reference source selection will be updated. The start time of the conversion is set for ADSC After the next ADC enters the rising edge of the clock. Therefore, it is recommended that the user enter an ADC input after ADSC Do not operate ADMUX to select a new channel and reference source during clock cycles.

When using auto-triggering, the time at which the event occurred is uncertain. In order to control the impact of the new settings on the conversion, the update ADMUX register should be particularly careful. If both ADATE and ADEN are set, the interrupt time can occur at any time, Which automatically trigger, start the ADC conversion. If the contents of the ADMUX register are changed during this period, then the user is not available The next step is based on the old configuration or the new configuration. It is recommended that the user make ADMUX at the following safety times Update:

1) ADATE or ADEN bit is "0";

2) during the conversion process, but at least one ADC input clock cycle after the trigger event occurs;

3) After the conversion is complete, but before the interrupt flag of the trigger source is cleared.

If you update ADMUX in any of the cases mentioned above, the new configuration will take effect before the next conversion.

When selecting the ADC input channel, note that the channel is selected before the conversion is initiated and an ADC input after ADSC is set After entering the clock cycle, you can select a new analog input channel, but the easiest way is to wait until the conversion is complete and then change aisle.

The reference voltage source V ref of the ADC reflects the conversion range of the ADC. If the single-ended channel level exceeds V ref , the conversion result will be Close to maximum 0xFFF. V ref can be AVCC, the voltage of the external AREF pin, the internal 1.25V or 2.56V reference source. Use internal reference (1.25V/2.56V) Note:

After the chip is powered on, the internal reference is calibrated to *1.25V by* default . If the user uses a *1.25V* internal reference, Then use, no other operation. But if you need to use the *2.56V* internal reference voltage, you need to update the internal benchmark Calibration value. The calibration value of *2.56V* is loaded into register *VCAL2 (0xCE)* after power-up. When the program is initialized, the *VCAL2* The value is read and written to the *VCAL (0xC8)* register to complete the *2.56V* calibration.

It should be noted that when the VCAL register is updated, the calibration value of VCAL1, that is, 1.25V, is updated to

VCAL2, so if you need to re-select the 1.25V benchmark during subsequent use, you need to save the value of VCAL1 in advance To the variable for later use.

- 204 -

Page 211

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Register definition

register	address	ADC register list	description
ADCL	0x78	0x00	ADC data low byte register
ADCH	0x79	0x00	ADC data high byte register
ADCSRA	0x7A	0x00	ADC control and status register A
ADCSRB	0x7B	0x00	ADC control and status register B
ADMUX	0x7C	0x00	ADC multiple select control register
ADTMR	0x7D	0x01	ADC mode control register
DIDR0	0x7E	0x00	Digital input disable control register 0

ADCL - ADC data low byte register

			ADCL - ADO	C data low byte	e register					
Address: 0x7	8	Default: 0x00								
Bit	7	6	5	4	3	2	1	0		
Name0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0		
Namel	ADC3	ADC2	ADC1	ADC0	-	-	-	-		
\mathbf{R} / \mathbf{W}	R / W									
Initial	0	0	0	0	0	0	0	0		

Bit Name

description

7: 0 ADC [7: 0] / ADC data low byte register.

ADC [3:0]

When the ADLAR bit is "0", the ADC output data stored in the register is placed in low order, that is, ADCL For ADC [7: 0], as shown by Name0; when the ADLAR bit is "1", the ADC output data is registered The storage in the device is aligned by the high order, ie the high 4 bits of the ADCL are ADC [3: 0], the lower 4 bits are meaningless, such as

Name1.

ADCH - ADC Data High Byte Register

			ADCH - ADC	Data High B	yte Register						
Address: 0x7	79	Default: 0x00									
Bit	7	6	5	4	3	2	1	0			
Name0	-	-	-	-	ADC11	ADC10	ADC9	ADC8			
Namel	ADC11	ADC10	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4			
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	$\mathbf{R} \ / \ \mathbf{W}$	R / W			
Initial	0	0	0	0	0	0	0	0			

7: 0 ADC [11: 8] / ADC

Name

.....

Bit

ADC data low byte register.

ADC [11: 4] When the ADLAR bit is "0", the ADC output data is stored in the register in low order, ie ADCH

description

- 205 -

Page 212

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

The lower 4 bits are ADC [11: 8], the upper 4 bits are meaningless, as shown by Name0; when the ADLAR bit is "1", The ADC output data is stored in the register in high order, ie ADCH is ADC [11: 4], such as Name1.

ADCSRA - ADC CONTROL AND STATUS REGISTER A

	ADCSRA - ADC CONTROL AND STATUS REGISTER A
Address: 0x7A	Default: 0x02

Bit 7 6 5 4 3 2 1 0

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

Name	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	
Initial	0	0	0	0	0	0	1	0	

Bit	Name	description					
		ADC enable control bit.					
7	ADEN	When the ADEN bit is set to "1", the ADC is enabled.					
		When the ADEN bit is set to "0", the ADC is disab	led.				
		The ADC starts to convert.					
6	ADSC	In the single conversion mode, ADSC is set to initi	ate a conversion. In continuous conversion mode, ADSC				
		Setting will start the first conversion.					
		ADC auto trigger enable bit.					
e	ADATE	When the ADATE bit is set to "1", the auto trigger	function is enabled. The trigger signal is selected to rise				
3	ADALE	Turn on once. The selection of the trigger source is	controlled by the ADTS of the ADCSRB register.				
		When the ADATE bit is set to "0", the auto trigger	function is disabled.				
		ADC interrupt flag.	ADC interrupt flag.				
4	ADIE	Set ADIF when the ADC completes a conversion a	nd updates the data register. If the ADC interrupt is enabled				
4	ADIF	ADIE is "1" and the global interrupt is set, the ADC interrupt is generated. Executing an ADC interrupt clears ADIF					
		Bit, you can also write "1" to this bit to clear.					
		ADC interrupt enable control bit.					
3	ADIE	The ADC interrupt is enabled when the ADIE bit is	s set to "1" and the global interrupt is set.				
		When the ADIE bit is set to "0", the ADC interrupt	is disabled.				
2: 0	ADPS [2: 0]	ADC prescaler selection control bit.					
		ADPS Selects the system clock to generate the pres	scaler factor for the ADC clock.				
		ADPS [2: 0]	Prescaler factor				
		0	2				
		1	2				
		2	4				
		3	8				
		4	16				
		5	32				
		6	64				
		7	128				

- 206 -

Page 213

LGT8FX8	D Series - Progra		LogicGr	een Technolog	ies Co., LTD			
AD	CSRB - ADC	CONTROL AN	D STATUS I	REGISTER E	:			
		1	4DCSRB - AD	C CONTROL	AND STATUS	REGISTER B		
Addres	s: 0x7B				I	Default: 0x00		
Bit	7	6	5	4	3	2	1	0
Name	e ACME0	ACME00 ACME	11 ACME10		ACTS	ADTS2	ADTS1	ADTS0
R / V	W R/W	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$W \ / O$	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}
Initia	ıl 0	0	0	0	0	0	0	0
Bit	Name	description						
7	ACME01	Comparator 0 Ne	gative input sel	ection				
6	ACME00	00: Negative Sele	ect External Inp	ut ACIN0				
		01: Negative Select ADC multiplexed output						
		1X: Negative Sel	ects the output	of op amp 0				
5	ACME11	Comparator 1 Ne	gative input sel	ection				
4	ACME10	00: Negative Sele	ct External Inp	ut ACIN2				
		01: Negative Sele	ect ADC multip	lexed output				

1X: Negative Selects the output of op amp 1

3

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

ACTS AC trigger source channel selection

0 - AC0 output as the ADC auto-conversion trigger source

1 - AC1 output as the ADC automatic conversion trigger source

2: 0 ADTS [2: 0] ADC auto trigger source selection control bit.

When the ADATE bit is set to "1", the auto trigger function is enabled and the selection of the trigger source is controlled by ADTS.

When setting the ADATE bit to "0", the ADTS setting is invalid. The trigger signal interrupt flag is selected to rise

Turn on once. When the trigger source is cleared from an interrupt flag to the trigger source set by the interrupt flag

Will trigger the signal to produce a rising edge, if ADEN is set at this time, ADC will open a conversion.

The auto trigger function is disabled when switching to continuous conversion mode (ADTS = 0).

ADTS [2: 0]	Frigger	source
-------------	---------	--------

0 Continuous conversion mode

- 1 Comparator 0/1
- 2 External interrupt 0
- 3 Timer counter 0 compare match
- 4 Timer counter 0 overflows
- 5 Timer Counter 1 Compare Match B
- 6 Timer counter 1 overflows
- 7 Timer Counter 1 Enter the capture event

Page 214

LGT8FX8D Series - Programming Manual 1.0.5 LogicGreen Technologies Co., LTD

ADMUX -	ADC	Multiplex	Select	Control	Register

	ADMUX - ADC Multiplex Select Control Register							
Address: 0x7	7C				Default: 0x00)		
Bit	7	6	5	4	3	2	1	0
Name	REFS1	REFS0	ADLAR CI	HMUX4 CHM	UX3 CHMUX2	CHMUX1 CH	IMUX0	
\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	R / W	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}
Initial	0	0	0	0	0	0	0	0

- 207 -

Bit Name

7: 6 REFS [1: 0] Reference voltage selection control bit.

By setting the REFS control bit to select the reference voltage, if the REFS setting is changed during the conversion process, It will only work until the current conversion is complete.

description

 REFS [1: 0]
 Reference voltage selection

 0
 AREF

 1
 AVCC

 2
 On-chip 2.56V reference

 3
 On-chip 1.25V reference

 ADLAR
 Conversion result left aligned in the ADC data register.

 When the ADLAR bit is set to "1", the conversion result is left aligned in the ADC data register.

4: 0 CHMUX [4: 0] ADC input source selection control bit.

5

0	PC0	
1	PC1	
2	PC2	
3	PC3	External input source
4	PC4	External input source
5	PC5	
6	PE1	
7	PE3	
8	1 / 4VCC power supply voltage d	letection
$9 \sim 12$	Keep it	
13	Internal op amp 0 output	Internal input source
14	Internal reference voltage source	
15	GND	

- 208 -

Page 215

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

ADTMR - ADC mode control register

ADTMR - ADC mode control register								
Address: 0x7D Default: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	-	-	-	-	-			ADTM
R / W	-	-	-	-	-			\mathbf{R} / \mathbf{W}
Initial	0	0	0	0	0	0	0	0

Bit	Name	description
7:1	-	Keep it.
0	ADTM	Test mode, the internal reference voltage is output from the AVREF port

DIDR0 - Digital input disable control register 0

DIDR0 - Digital input disable control register 0										
Address: 0x	7E		Default: 0x00							
Bit	7	6	5	4	3	2	1	0		
Name	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D		
\mathbf{R} / \mathbf{W}	\mathbf{R} / \mathbf{W}	$\mathbf{R} \ / \ \mathbf{W}$	R / W	R / W	R / W	R / W	$\mathbf{R} \ / \ \mathbf{W}$	\mathbf{R} / \mathbf{W}		
Initial	0	0	0	0	0	0	0	0		

Bit Name description

7: 0 ADCD [7: 0] Digital input disable control bit.

When the ADCxD bit is set to "1", the digital input of the pin ADCx is disabled and remains zero. When to make ADCx digital input function is not required when simulating the comparator, so ADCxD must be set.

When the ADCxD bit is set to "0", the digital input of the pin ADCx is enabled and the signal on the pin can be lost

Into the internal digital logic, then clear the ADEN bit, and turn off the analog comparator.

- 209 -

Page 216

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

Electrical characteristics

Absolute working environment

Operating temperature	-40 - 85C	Important note :
storage temperature	-60 - 150C	The external working environment applied when the chip is working is larger than the listed
Pin level	0V - VCC	The maximum limit may cause the chip to be physically damaged. Chip
Maximum operating voltage	6.0V	The guaranteed normal function must ensure that the working environment is given the most
I / O maximum current	30mA	Large limit condition. When the chip is working for a long time with maximum
VCC / GND maximum current	200mA	Parameters, will affect the chip life and device stability
ESD characteristics	$\geq \pm 4 KV$	Sex.

DC characteristics

Typical DC characteristics TA = -40 - + 85C, VCC = 1.8V - 5.5V

Symbol	Parameter	Condition	Min.	Тур	Max. U	Unit
V IL	Enter the low level thresh	hold		VCC / 3		v
V III	Enter the high level thres	hold		VCC / 2		V
V OL	Output low level threshol	ld I $o_L = 40 \text{mA}, \text{VCC} = 5 \text{V}$			0.8	V
		I of $= 25 \text{ mA}, \text{ VCC} = 3.3 \text{ V}$			0.7	
V он	Output high level thresho	old I $OH = 20mA$, VCC = 5V	4.4V			V
		I он = 12 mA, VCC = 3.3 V	2.6V			
IIL	I / O input low leakage				1	uA
Iн	I / O input high leakage				1	uA
R WPU	I / O weak pull-up value			80K		Ω
R pu	I / O strong pull-up resist	ance		15K		Ω
	Active	<u>1MHz@3.3V</u>		0.56		mΛ
		<u>4MHz@3.3V</u>		1.25		IIIA
I cc	IDLE	<u>4MHz@3.3V</u>		0.30		mA
	Power / Off S0	w / o <u>WDT@3.3V</u>		12.0		uA
	Power / Off S1	VCC = 3.3V		7.4		uA

Description:

1. The above power consumption test will be configured to drive low-drive mode, detailed configuration, please refer to the power control related documents;

2. Test code drives an I / O output with a fixed frequency square wave and cyclically reads the status of a port;

- 210 -

Page 217

LGT8FX8D Series - Pr	ogramming Manual 1.0.	LogicGr	een Technologies Co., LTD	
Internal clock	characteristics			
	Frequency	VCC	Temperature	Accuracy
Factory	32MHz	2.5V - 5V	25C	± 2%
Calibration	32KHz	2.5V - 5V	25C	± 2%

Internal reference voltage characteristics

	Voltage	VCC	Temperature	Accuracy
Factory	1.25V	2.0V - 5V	25C	$\pm 1\%$
Calibration	2.56V	3.3V - 5V	25C	$\pm 1\%$

Low voltage detection circuit characteristics

VDTS	Min.VBOT	Typ. VBOT	Max. VBOT	Uint	
111		VDT Di	sabled		
110	1.6	1.7	2.0		
101	2.4	2.5	2.8		V
100	3.8	4.0	4.5		
011					
		Reser	ved		
000					

ADC circuit characteristics

Symbol	Parameter	Condition	Min.	Min. Typ Max. Ur		it
	Resoultion			12		Bits
V in	Input Voltage		GND		V REF	V
AV cc	Power Supply		2.0		VCC	V
V REF	Reference Voltage		1.0		AV cc	V
CLK	Clock Frequency		50K		10M	Hz
	Conversion Time	Free running		19		CLK
INL	Integral Non-Linearity			3		LSB
DNL	Differential			3		LSB
	Non-Linearity					
R AIN	Input Resistance			100		MΩ

- 211 -

LogicGreen Technologies Co., LTD

Comparator circuit characteristics

LGT8FX8D Series - Programming Manual 1.0.5

Symbol	Parameter	Condition	Min. Typ Max. U		Max. Uni	it
	Resoultion			5		mV
V in	Input Voltage		GND		VCC	V
AV cc	Power Supply		2.0		VCC	V
R AIN	Input Resistance			100		MΩ

Operational amplifier circuit characteristics

Symbol	Parameter	Condition	Min.	Тур	Max.	Unit
Gain	Amplify Gain	$V_{IN} =$ 100mV ~ 220mV		12		
V in	Input Voltage				(VCC-0.9) / Gain V	
AV cc	Power Supply		2.0		VCC	V
R AIN	Input Resistance			100		MΩ

Op amp input and magnification Response characteristics:

1	2	3	4	5	6	7	8	9	10	Unit
20	40	60	80	90	100	110	120	130	140	mV
11	12	13	14	15	16	17	18	19	20	Uint
150	160	170	180	190	200	210	220	230	240	mV

16.000		
14.000		
12.000		
10.000		
	C	dain@3.3V
8.000	C	Gain@4.7V
6.000	C	dain@5.0V
4.000		
2.000		
0.000		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

- 212 -

Page 219

LGT8FX8D Series - Programming Manual 1.0.5

Register lookup table

Address Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Extended IO Register

\$ F6 GUID3

https://translate.googleusercontent.com/translate_f

GUID Byte 3

LogicGreen Technologies Co., LTD

189/199

30/0	8/20)17

\$ F5	GUID2				GUI	D Byte 2			
\$ F4	GUID1				GUI	D Byte 1			
\$ F3	GUID0				GUI	D Byte 0			
\$ F2	PMCR	PMCE	CLKFS	CLKSS	WCLKS	OSCKEN	OSCMEN	RCKEN	RCMEN
\$ F1									
\$ F0	IOCR	IOCE	STOSC1	STOSC0 DA	ACEN1 DACE	N0	XIEN	REFIOEN	RSTIOEN
\$ EE	PMXCR					OC0C0	SSB1	TDD6	RDD5
\$ EC	TKCSR	-	F2XEN	TC2XF1	TC2XF0	-	AFCKS	TC2XS1	TC2XS0
\$ E2	PSSR	PSS1	-	-	-	-	-	-	PSR1

\$ CF	LDOCR	WEN				PDEN	VSEL2	VSEL1	VSEL0	
\$ CE	VCAL2			Calibration	n value for 2.56	5V internal refe	rence			
\$ CD	VCAL1			Calibratio	on value for 1.2	V internal refe	rence			
\$ C8	VCAL		Internal Voltage Reference calibration register							
\$ C6	UDR0				USA	ART Data				
\$ C5	UBRR0H	-	-	-	-	U	SART Baud Rate	e Register High		
\$ C4	UBRR0L			U	SART Baud R	ate Register Lo	W			
\$ (2)	LICSBOC	TIM	ELO	LIDA	40	LICDCO	UCSZ01 /	UCSZ00 /	UCDOLO	
\$ C2	UCSRUC	UNI	SELU	Orb	10	03830	UDORD0	UCPHA0	UCFOLD	
\$ C1	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	
\$ C0	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	
\$ BD	TWAMR			Т	WI Address Ma	ask			-	
\$ BC	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	
\$ BB	TWDR				ΤV	VI Data				
\$BA	TWAR				TWI Address	S			TWGCE	
\$ B9	TWSR			TWI Status			-	TW	/PS	
\$ B8	TWBR				TWI	Bit Rate				
\$ B6	ASSR	-	EXCLK	AS2	TCN2UB O	CR2AUB OCR	2BUB TCR2AU	B TCR2BUB		

- 213 -

Page 220

LGT8F	X8D Series - P	rogramming	Manual 1.0.5				LogicGreen To	echnologies Co.,	LTD
Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$ B4	OCR2B			Timer / Cou	inter 2 Outpu	ıt Compare Regi	ster B		
\$ B3	OCR2A			Timer / Cou	inter 2 Outpu	ut Compare Regi	ster A		
\$ B2	TCNT2			Time	er / Counter 2	2 Counter Regist	er		
\$B1	TCCR2B	FOC2A	FOC2B	-	-	WGM22		CS2	
\$ B0	TCCR2A	CO	M2A	COM2	2B	-	-	WGM21	WGM20
\$ A9	PORTE				Port	Output E			
\$ A8	DDRE				Data I	Direction E			
\$ A7	PINE				Por	t Input E			

3F328D

				LC	GT8F48D	LGT8F8	BD LGT8F	168D LG	T8F328[
\$ 8B	OCR1BH			Timer /	Counter 1 Out	put Compare B	High					
\$ 8A	OCR1BL		Timer / Counter 1 Output Compare B Low									
\$ 89	OCR1AH		Timer / Counter 1 Output Compare A High									
\$ 88	OCR1AL			Timer	Counter 1 Out	put Compare A	Low					
\$ 87	ICR1H			Tim	er / Counter 1 I	nput Capture H	igh					
\$ 86	ICR1L			Tim	er / Counter 1	Input Capture L	ow					
\$ 85	TCNT1H			1	Fimer / Counter	1 Counter Higl	h					
\$ 84	TCNT1L			-	Fimer / Counter	r 1 Counter Low	7					
\$ 82	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-			
\$ 81	TCCR1B	ICNC1	ICES1	-	WGM13 W	GM12		CS1				
\$ 80	TCCR1A	CO	MIA	COM	/1B	-	-	WGM11	WGM10			
\$ 7F	DIDR1	OPA3D	OPA2D	OPA1D	OPA0D	AIN3D	AIN2D	AIN1D	AIN0D			
\$ 7E	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D			
\$ 7D	ADTMR	-	-	-	-	-	-	-	ADTM			
\$ 7C	ADMUX	R	EFS	ADLAR	-		М	UX				
\$ 7B	ADCSRB A	CME01 ACM	E00 ACME11	ACME10		-		ADTS				
\$ 7A	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE		ADPS				
\$ 79	ADCH				ADC	Data High						
\$ 78	ADCL				ADC	Data Low						
\$ 75	IVBASE			1	interrupt Vector	Base Address						
\$ 73	PCMSK3		PCINT30 P	CINT29 PCINT	28 PCINT27		PCINT26	PCINT25	PCINT24			
\$ 70	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2			
\$ 6F	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1			
\$ 6E	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0			

- 214 -

PCINT [23:16]

Page 221

\$ 6D

PCMSK2

LGT8F2	X8D Series - P	rogramming	Manual 1.0.5		LogicGreen Technologies Co., LTD				
Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$ 6C	PCMSK1				PCI	NT [15: 8]			
\$6B	PCMSK0				PC	INT [7: 0]			
\$ 69	EICRA	-	-	-	-	IS	C1	ISC	0
\$ 68	PCICR	-	-	-	-	PCIE3	PCIE2	PCIE1	PCIE0
\$ 66	OSCCAL	-	-			OSC Ca	libration		
\$ 65	PRR1	-	-	PRWDT	-	-	PREFL	PRPCI	-
\$ 64	PRR	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC
\$ 62	VDTCR	VDTCE S	WRSTN	-	-	VD	FSEL	LVREN	VDTEN
\$ 61	CLKPR	CLKPCE C	LKOENI CLE	KOEN0	-		С	LKPS	
\$ 60	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0
				IO R	legister				
\$ 5F (\$ 3F)	SREG	Ι	Т	Н	S	v	N.	Z	С
\$ 5E (\$ 3E)	SPH				Stack I	Point High			
\$ 5D (\$ 3D)	SPL				Stack	Point Low			
\$ 5A (\$ 3A) C	P0TCNT			OPA	0 Channel Swi	tch Periold Regi	ser		
\$ 59 (\$ 39) OI	P0CRB	OPTEN		C	PA1 Channel	Switch Hold Tin	ning Register		

\$ 58 (\$ 38) OP0CRA OP1EN ACCH ACFEN -CHIIM CH0IM CH1EN CH0EN

https://translate.googleusercontent.com/translate_f

\$ 56 (\$ 36)	ECCR	WEN	EEN	-	-	-	-	EC1	EC0
\$ 55 (\$ 35) MC	UCR	FWKEN FPDEN - PUD IVSEL I							IVCE
\$ 54 (\$ 34) MC	USR	SWDD	-	-	OCDRF	WDRF	BORF	EXTRF	PORF
\$ 53 (\$ 33)	SMCR	-	-	-	-		SM		SE
\$ 52 (\$ 32)	DAL0	DAC0 Output data Register							
\$ 51 (\$ 31) AF	ICNT0				AC0 Filter Tir	ning Register			
\$ 50 (\$ 30)	AC0SR	ACD	ACBG	ACO	ACI	ACIE	ACIC	AC	IS
\$4E (\$2E)	SPDR				SPI	Data			
\$4D (\$2D)	SPSR	SPIF	WCOL	-	-	-	DUAL	-	SPI2X
\$ 4C (\$ 2C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPI	ર
\$ 4B (\$ 2B) GP	IOR2				General Purpose	IO Register 2			
\$ 4A (\$ 2A) GP	IOR1				General Purpose	IO Register 1			
\$ 48 (\$ 28)	OCR0B			Timer / C	ounter 0 Output	Compare Regis	ter B		
\$ 47 (\$ 27)	OCR0A			Timer / C	ounter 0 Output	Compare Regis	ter A		
\$ 46 (\$ 26)	TCNT0				Timer / Count	er 0 Counter			
\$ 45 (\$ 25) TCC	CR0B	FOC0A	FOC0B	OC0AS	-	WGM02		CS0	
\$ 44 (\$ 24) TCC	CR0A	COM	0A	COM	40B	-	-	WGM01	WGM00

- 215 -

Page 222

LGT8FX8D Series - Programming Manual 1.0.5 LogicGreen Technologies Co., LTD

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$ 43 (\$ 23)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC
\$ 42 (\$ 22)	EEARH				EEPROM	Address High			
\$41 (\$21)	EEARL				EEPROM	Address Low			
\$ 40 (\$ 20)	EEDR				EEPRO	M Data Low			
\$ 3F (\$ 1F)	EECR	EEPM2	-	EEPM1	EEPM0	EERIE	EEMWE	EEWE	EERE
\$ 3E (\$ 1E) G	PIOR0				General Purpos	se IO Register 0			
\$ 3D (\$ 1D)	EIMSK	-	-	-	-	-	-	INT1	INT0
\$ 3C (\$ 1C)	EIFR	-	-	-	-	-	-	INTF1	INTF0
\$3B(\$1B)	PCIFR	-	-	-	-	PCIF3	PCIF2	PCIF1	PCIF0
\$ 37 (\$ 17)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2
\$ 36 (\$ 16)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1
\$ 35 (\$ 15)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0
\$ 34 (\$ 14) OI	P1TCNT			OP1 Ch	annel Switch P	eriod Tming Re	egister		
\$ 33 (\$ 13) OI	P1CRB	OPTEN			OP1 Channel S	ning Register			
\$ 32 (\$ 12) OI	PICRA OPIE	N	ACCH	ACFEN	-	CH1IM	CH0IM	CHIEN	CH0EN
\$ 31 (\$ 11)	DAL1				DAC1 Outp	ut level select			
\$ 30 (\$ 10) Al	FTCNT1				AC1 Filter T	iming Register			
\$ 2F (\$ 0F) A	C1CSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	A	CIS
\$2B(\$0B)	PORTD				Port	Output D			
\$2A (\$0A)	DDRD				Data D	Direction D			
\$ 29 (\$ 09)	PIND				Port	Input D			
\$ 28 (\$ 08)	PORTC				Port	Output C			
\$ 27 (\$ 07)	DDRC				Data D	Direction C			
\$ 26 (\$ 06)	PINC				Port	t Input C			

Port Output B

Data Direction B

Port Input B

https://translate.googleusercontent.com/translate_f

PORTB

DDRB

PINB

\$ 25 (\$ 05)

\$ 24 (\$ 04)

\$ 23 (\$ 03)

LogicGreen Technologies Co., LTD

- 216 -

Page 223

LGT8FX8D Series - Programming Manual 1.0.5

Instruction set

instruction	Operands	description	operating	Mark bit	cycle
Arithmetic logi	ic instructions				
ADD	R d , R r	Register is added	$R_{d} \gets R_{d} + R_{r}$	Z, C, N, V, H	1
ADC	R d , R r	Supports with carry registers	$R_{d} \gets R_{d} + R_{r} + C$	Z, C, N, V, H	1
ADIW	R d , K	Immediate additions to words	$R \hspace{0.1cm} {}_{dh} \hspace{0.1cm} : \hspace{0.1cm} R \hspace{0.1cm} {}_{dl} \leftarrow R \hspace{0.1cm} {}_{dh} \hspace{0.1cm} : \hspace{0.1cm} R \hspace{0.1cm} {}_{dl} + K$	Z, C, N, V, S	1
SUB	R d , R r	Register addition and subtraction	$R \ {}_d \gets R \ {}_d - R \ {}_r$	Z, C, N, V, H	1
SUBI	R d , K	Register decrements	$R \triangleleft \leftarrow R \triangleleft \textbf{-} K$	Z, C, N, V, H	1
SBC	R d , R r	The register with the borrow is added and subtra	$ctedR d \leftarrow R d - R r - C$	Z, C, N, V, H	1
SBCI	R d , K	The register with borrow is decremented	$R \triangleleft \leftarrow R \triangleleft \textbf{-} K \textbf{-} C$	Z, C, N, V, H	1
SBIW	R dl , K	Immediate subtraction with words	$R \hspace{0.1cm} {}_{\textnormal{dh}} \hspace{0.1cm} : \hspace{0.1cm} R \hspace{0.1cm} {}_{\textnormal{dl}} \hspace{0.1cm} \leftarrow \hspace{0.1cm} R \hspace{0.1cm} {}_{\textnormal{dh}} \hspace{0.1cm} : \hspace{0.1cm} R \hspace{0.1cm} {}_{\textnormal{dl}} \hspace{0.1cm} - \hspace{0.1cm} K$	Z, C, N, V, S	1
AND	R d , R r	Logical and	$R \mathrel{_d} \leftarrow R \mathrel{_d} \And R \mathrel{_r}$	Z, N, V	1
ANDI	R d , K	Register logic and constants	$R \triangleleft \leftarrow R \triangleleft \& K$	Z, N, V	1
OR	R d , R r	Logical or	$R \ \texttt{d} \leftarrow R \ \texttt{d} \mid R \ \texttt{r}$	Z, N, V	1
ORI	R d , K	Register logic or constant	$R \mathrel{_d} \leftarrow R \mathrel{_d} \mid K$	Z, N, V	1
EOR	R d , R r	Register exclusive OR	$R \mathrel{_d} \leftarrow R \mathrel{_d} \oplus \mathrel{_R} r$	Z, N, V	1
Com	R d	Reverse code	$R _d \gets \$ FF - R _d$	Z, C, N, V	1
NEG	R d	2 forcibly	R d ← \$ 00 - R d	Z, C, N, V, H	1
SBR	R d , K	Set the bits in the register	$R \triangleleft \leftarrow R \triangleleft v K$	Z, N, V	1
CBR	R d , K	The bits in the clear register	$R \triangleleft \leftarrow R \triangleleft v \; (\$ \; FF \text{ - } K)$	Z, N, V	1
INC	R d	Increment	$R_{d} \leftarrow R_{d} + 1$	Z, N, V	1
DEC	R d	Diminished	$R d \leftarrow R d - 1$	Z, N, V	1
TST	R d	The test is 0 or negative	$R \triangleleft \leftarrow R \triangleleft \& R \triangleleft$	Z, N, V	1
CLR	R d	Clear register	$R _d \gets R _d \oplus R _d$	Z, N, V	1
SER	R d	The register is all set to 1	$R \triangleleft \leftarrow \$ \; FF$	None	1
MUL	R d , R r	Unsigned multiplication	$R :: R \circ \leftarrow R \mathrel{\tiny d} x \mathrel{R} r$	Z, C	1
MULS	R d , R r	Symbolic multiplication	$R :: R \circ \longleftarrow R \mathrel{d} x \mathrel{R} r$	Z, C	1
MULSU	R d , R r	Signed number of unsigned numbers	$R :: R \circ \leftarrow R \mathrel{\scriptscriptstyle d} x \mathrel{R} \mathrel{_{\mathrm{f}}}$	Z, C	1
FMUL	R d , R r	Unsigned multiplication	$R :: R \circ \leftarrow (R \triangleleft x \mathrel{R_{r}}) \mathrel{<\!\!\!\!<} 1$	Z, C	1
FMULS	R d , R r	Signed multiplication, shift	$R :: R \circ \leftarrow (R \triangleleft x \mathrel{R_r}) << 1$	Z, C	1
FMULSU	R d , R r	Signed number of unsigned numbers, shifted	$R :: R \circ \leftarrow (R \triangleleft x \mathrel{R_r}) <\!\!< 1$	Z, C	1
Jump instructio	n				
RJMP	K	Relative jump	$\text{PC} \gets \text{PC} + \text{K} + 1$	None	1
IJMP		Indirect jump (to Z point to address)	$PC \leftarrow Z$	None	2
JMP	K	Direct jump	$\text{PC} \leftarrow \text{K}$	None	2
RCALL	K	Relative address subroutine call	$\text{PC} \gets \text{PC} + \text{K} + 1$	None	1
ICALL		Indirect subroutine call (Z point to address)	$PC \leftarrow Z$	None	2

https://translate.googleusercontent.com/translate_f

CALL	K	Direct subroutine call	$\text{PC} \leftarrow \text{K}$	None	2
RET		Subroutine returns	$PC \leftarrow Stack$	None	2
RETI		Interrupt the return	$PC \leftarrow Stack$	Ι	2

- 217 -

Page 224

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

instruction	Operands	description	operating	Mark bit	cycle
Jump instruc	tion (continued	d)			
CPSE	R d , R r	Equal jump	If (R $_d = R_r$) PC \leftarrow PC + 2 or 3	None	1/2
СР	$R{}_{\rm d}$, $R{}_{\rm r}$	Comparison	R d - R r	Z, N, V, C, H	1
The	$R{}_{\rm d}$, $R{}_{\rm r}$	With carry comparison	R d - R r - C	Z, N, V, C, H	1
СРІ	R d , K	Compare with immediate data	R d - K	Z, N, V, C, H	1
SBRC	R r , b	The bit is 0 to skip the next instruction	If $(R_r(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBRS	R r , b	Bit 1 skip the next instruction	If $(R_r(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBIC	P, b	The I / O bit is 0 to skip the next instruction	on If (P (b) = 0) PC \leftarrow PC + 2 or 3	None	1/2
SBIS	P, b	The I / O bit is 1 to skip the next instruction	on If (P (b) = 1) PC \leftarrow PC + 2 or 3	None	1/2
BRBS	s, k	The status flag is 1 to jump	If (SREG (S) = 1) PC \leftarrow PC + K + 1	None	1/2
BRBC	s, k	The status flag is 0 to jump	If (SREG (S) = 0) PC \leftarrow PC + K + 1	None	1/2
BREQ	k	Equal jump	if $(Z = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Ranging from jumping	if $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Carry is jump	if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCC	k	No carry jump	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Not less than the jump	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Less than jump	if $(C = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Jump for negative	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	For the regular jump	if $(N = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Signed not to jump	if (N \oplus V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Signed less than 0 jumps	if (N \oplus V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Half carry for 1 jump	if $(H = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Half carry is 0 to jump	if $(H = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	T is set to jump	if $(T = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	T is cleared	if $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Overflow jumps	$f(V = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Do not overflow is jump	$f (V = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	The global interrupt is enabled	$f (I = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRID	k	The global interrupt is disabled	$f (I = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
Data transfer	instructions				
MOV	Rd, Rr	Move data between registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Move a word of data	$Rd + 1$: $Rd \leftarrow Rr + 1$: Rr	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Indirect loading	$Rd \leftarrow (X)$	None	1/2
LD	Rd, X +	Indirect load, address increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	1/2
LD	Rd, -X	The address is decremented and loaded in	differtlyX - 1, Rd \leftarrow (X)	None	1/2
LD	Rd, Y	Indirect loading	$Rd \leftarrow (Y)$	None	1/2
LD	Rd, Y +	Indirect load, address increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	1/2
LD	Rd, -Y	The address is decremented and loaded in	dimetly - 1, $Rd \leftarrow (Y)$	None	1/2
LDD	Rd, Y + q	Indirect loading with offset	$Rd \leftarrow (Y + q)$	None	1/2

- 218 -

Page 225

LGT8FX8D Series - Programming Manual 1.0.5

LogicGreen Technologies Co., LTD

LD	Rd, Z	Indirect loading	$Rd \leftarrow (Z)$	None	1/2
LD	Rd, Z +	Indirect load, address increment	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	1/2
LD	Rd, -Z	The address is decremented and loaded ind	$ligestlyZ - 1, Rd \leftarrow (Z)$	None	1/2
LDD	Rd, Z + q	Indirect loading with offset	$Rd \leftarrow (Z + q)$	None	1/2
LDS	Rd, k	Load directly from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Indirect storage	$(X) \leftarrow Rr$	None	1
ST	X+, Rr	Indirect storage, address increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	1
ST	-X, Rr	The address is decremented and stored ind	interest $X - 1, (X) \leftarrow Rr$	None	1
ST	Y, Rr	Indirect storage	$(Y) \leftarrow Rr$	None	1
ST	Y+, Rr	Indirect storage, address increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	1
ST	-Y, Rr	The address is decremented and stored ind	$in each y Y - 1, (Y) \leftarrow Rr$	None	1
STD	Y + q, Rr	Indirect storage with offset	$(Y + q) \leftarrow Rr$	None	1
ST	Z, Rr	Indirect storage	$(Z) \leftarrow \operatorname{Rr}$	None	1
ST	Z+, Rr	Indirect storage, address increment	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	1
ST	-Z, Rr	The address is decremented and stored ind	iižetłyZ - 1, (Z) ← Rr	None	1
STD	Z+q, Rr	Indirect storage with offset	$(Z + q) \leftarrow Rr$	None	1
STS	k, Rr	Directly stored in the SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load the program space data	$R0 \leftarrow (Z)$	None	2
LPM	Rd, Z	Load the program space data	$Rd \leftarrow (Z)$	None	2
LPM	Rd, Z +	Load the program data, the address is increased	$enRed(Z), Z \leftarrow Z + 1$	None	2
LD	Rd, Z +	Indirect load, address increment	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	1
LD	Rd, -Z	The address is decremented and loaded ind	$ligestlyZ - 1, Rd \leftarrow (Z)$	None	1
LDD	Rd, Z + q	Indirect loading with offset	$Rd \leftarrow (Z + q)$	None	1
LDS	Rd, k	Load directly from SRAM	$Rd \leftarrow (k)$	None	2
IN	Rd, P	Read port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Write port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push the stack	$STACK \leftarrow Rr$	None	1
POP	Rd	Out of stack	$Rd \leftarrow STACK$	None	1/2
SBI	P, b	Set the IO register	I / O (P, b) ← 1	None	1
CBI	P, b	Clear the IO register	I / O (P, b) ← 0	None	1
LSL	Rd	Logic left shift	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z, C, N, V	1
LSR	Rd	Logically shifted right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z	1
ROL	Rd	The loop containing the carry is shifted left	$\hat{t}(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z	1
ROR	Rd	The loop containing the carry is shifted rig	$h(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z	1
ASR	Rd	Arithmetic right shift	$Rd(n) \leftarrow Rd(n+1), n = 0:6$	Z	1
SWAP	Rd	Bit exchange	$(3:0) \leftarrow \mathrm{Rd}\ (7:4), \mathrm{Rd}\ (7:4) \leftarrow \mathrm{Rd}\ (3:0)$	None	1
BSET	S	Set the status bit	SREG (s) $\leftarrow 1$	SREG (s)	1
BCLR	S	Clear status bit	SREG (s) $\leftarrow 0$	SREG (s)	1
BST	Rr, b	Stored in the T bit	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Read the T bit into the register	$Rd(b) \leftarrow T$	None	1
SEC		Set the carry flag	$C \leftarrow 1$	С	1

- 219 -

Page 226

	LGT8FX8D Series - Programming Manual 1.0.5			LogicGreen Technologies Co., LTD		
CLC		Clear carry mark	$C \leftarrow 0$		С	1
SEN		Set the negative flag	$N \leftarrow 1$		N.	1
CLN		Clear negative flag	$N \leftarrow 0$		N.	1

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

SEZ	Set the zero flag	$Z \leftarrow 1$	Z	1
CLZ	Clear the zero mark	Z ← 0	Ζ	1
SEI	Enable global interrupts	$I \leftarrow I$	Ι	1
CLI	Disable global interrupts	$I \leftarrow 0$	Ι	1
SES	Set the symbol test flag	$S \leftarrow 1$	S	1
CLS	Clear the symbol test flag	$S \leftarrow 0$	S	1
SEV	Set the twos complement overflow flag	$V \leftarrow 1$	V	1
CLV	Clear the two's complement overflow flag	$V \leftarrow 0$	V	1
SET	Set the T bit (SREG)	$T \leftarrow 1$	Т	1
CLT	Clear T bit (SREG)	$T \leftarrow 0$	Т	1
MCU control instructions				
NOP	Empty command		None	1
SLEEP	Go to sleep mode		None	1
WDR	Watchdog reset		None	1
BREAK	Soft breakpoint	Only for debugging purposes	None	N / A
NOP	Empty command		None	1
SLEEP	Go to sleep mode		None	1

- 220 -

Page 227

LGT8FX8D Series - Programming Manual 1.0.5

Encapsulation parameters

#twenty four # 17 # 25 # 16

С

LogicGreen Technologies Co., LTD

E1 E

LQFP32L Universal Dimension Definitions

Character code	Minimum value	Typical value	The maximum value	unit
D	8.90	9.00	9.10	mm
D1	6.90	7.00	7.10	mm
b	0.15	0.20	0.25	mm
e	0.75	0.80	0.85	mm
Е	8.90	9.00	9.10	mm
E1	6.90	7.00	7.10	mm
С	-	0.10	-	mm
L	0.55	0.60	0.65	mm
A1	-	1.40	-	mm

- 221 -

Page 228

LGT8FX8D Se	ries - Programming	g Manual 1.0.5			
	D				
# 20		# 11			
EI			Е	A1 A	
#1		# 10			
	e	b			

LogicGreen Technologies Co., LTD

	A2		
LI			
L			

SSOP20L Universal Dimension Definitions

Character code	Minimum value	Typical value	The maximum value	unit
D	6.90	7.20	7.50	mm

30/08/2017

LGT8F48D LGT8F88D LGT8F168D LGT8F328D

LogicGreen Technologies Co., LTD

A2 b	0.03 0.22	0.05 0.30	0.07 0.38	mm mm
e	-	0.65	-	mm
Е	7.40	7.80	8.20	mm
E1	5.00	5.30	5.60	mm
L1	0.55	-	0.95	mm
L	-	-	-	mm
A1	-	2.0	-	mm

- 222 -

Page 229

LGT8FX8D Series - Programming Manual 1.0.5

Version history

V1.0.5	Added a description of the package pin multiplexing relationship
V1.0.4	$Updated\ SSOP24\ /\ 20L\ package\ pin\ function\ definition,\ updated\ part\ of\ the\ electrical\ parameters$
V1.0.3	Added SSOP20L package size definition
V1.0.2	Added I / O default pull-up resistor description (input / output subsystem section p47)
	Increased use of the internal reference voltage (ADC section p204)
V1.0.1	Fixed some sections describing errors
V1.0.0	initial version
2015-02-03	

- 223 -